
Research Project

Peer Selection in Direct Connect

Author Yoran Heling

Supervisor Georgios Karagiannis

University of Twente
Master of Science in Embedded Systems

Faculty of Electrical Engineering, Mathematics and Computer Science

April 5, 2013

Contents

1 Introduction 2
1.1 Problem Statement and Research Questions 3
1.2 Organisation of this Report . 4

2 Peer Selection Mechanisms 5
2.1 Topology Estimation . 5
2.2 Performance Estimation . 8
2.3 Parallel Downloading Techniques 14
2.4 Incentive-Based Peer Selection 17

3 Overview of Direct Connect 18
3.1 High-level overview . 19
3.2 Connection initiation . 20
3.3 Content and peer discovery . 22
3.4 Uploading peers . 23
3.5 Peer Selection Strategies . 24

4 Peer Selection in Direct Connect 26
4.1 Criteria . 26
4.2 Topology Estimation . 27
4.3 Performance Estimation . 29
4.4 Parallel Downloading Techniques 33
4.5 Incentive-Based Peer Selection 35
4.6 Comparison . 36

5 Challenges 38
5.1 File chunk allocation . 38
5.2 Source peer availability . 38
5.3 Source peer discovery . 39
5.4 Free-riding . 40

6 Conclusions and Future work 41
6.1 Conclusion . 41
6.2 Future work . 42

Bibliography 43

1

Chapter 1

Introduction

Peer-to-peer (P2P) systems have seen an increase of attention since the early
2000s. Starting with the popular MP3 downloading application Napster in 1999,
many others have followed and improved on its design. P2P applications that
are widely used today include BitTorrent [22], Skype [15], Gnutella [37] and
Direct Connect [3].

A P2P system is a distributed network of peers, working together to provide
a set of services to the user. Applications of P2P systems include:

File distribution Scalable and efficient distribution of files. BitTorrent is a
popular example of a file distribution application that allows a regular
internet user to share large files with other users on the internet, without
having to set up and maintain a complex server infrastructure and pay
expensive bandwidth bills.

Instant messaging P2P systems can be used to provide secure and/or reliable
instant messaging between users. Direct Connect and Gnutella are exam-
ples of file sharing applications that include instant messaging function-
ality. Skype is a popular P2P application that provides scalable instant
messaging, voice chat and video conferencing.

Music streaming The music streaming service Spotify [9] uses a P2P archi-
tecture to supplement their available bandwidth.

Searching Many file sharing applications such as Kazaa [31], Direct Connect
and Gnutella provide functionality to allow a user to find files provided by
the other users on the network. Projects like JaCy [5] provide a distributed
web search.

P2P systems can be classified in two categories: Hybrid and pure P2P sys-
tems. A pure P2P system (figure 1.1c) is one that does not rely on a centralised
entity or function. This type of P2P system should remain functional for as
long as there are still some peers alive. Examples of pure P2P systems are
Freenet [11] and Gnutella. A hybrid P2P system (figure 1.1b) is one that uses a
distributed architecture for some of its services, but still relies on a centralized
entity to function. For example, the original BitTorrent protocol may rely solely
on other peers in the network to distribute content, but it still requires one or
more centralized trackers to discover these peers.

2

(a) (b) (c)

Figure 1.1: Three network architectures. (a) is a centralised, non-P2P network.
(b) is a hybrid and (c) a pure P2P architecture.

An underlying P2P system may provide a variety of services to the applica-
tion. The following services are common to many file-sharing networks:

Content and peer discovery Finding content on the network or finding other
peers to communicate with. An application may search for peers that
match certain criteria, such as a specific user to chat with, or to find a
peer that has a certain file which you are interested in.

Connection establishment When two peers wish to communicate with each
other, the P2P network will provide facilities to ensure that these two
peers can open a connection to each other. Some networks can route data
through other peers if a direct connection is not possible.

File transfers Each peer has some local files or file chunks, and allows other
peers to download these file (chunks).

Peer selection Once an application has obtained a list of peers which it could
download from, it will decide from how many peers to download from
simultaneously, and will then select suitable peers for the file transfer.

1.1 Problem Statement and Research Questions

This report focuses on the latter two services, file downloading and peer se-
lection. Determining from how many and from which peers to download from
involves a number of trade-offs. Downloading from a single peer at a time may
result in suboptimal downloading performance, whereas downloading from all
available peers simultaneously will severely impact the scalability of the net-
work. So a downloading peer has to make a selection among the available peers.
The distributed nature of P2P networks means that no peer has a holistic view
of the entire network, and information about properties such as where each peer
is located and what bandwidth they can provide is not known in advance.

The primary goal of peer selection is to select a minimum number of peers
to download from while optimizing for fast download speeds and low resource
overhead. This report attempts to answer the following key questions:

1. Which peer selection mechanisms exist?

2. What is Direct Connect?

3

3. Which peer selection mechanisms are suitable for Direct Connect?

4. What challenges exist for peer selection in Direct Connect?

1.2 Organisation of this Report

The organisation of this report follows the aforementioned research questions.
Chapter 2 attempts to answer question 1, and discusses various existing peer
selection mechanisms that may be relevant to Direct Connect. Chapter 3 follows
by answering question 2 with an overview of the Direct Connect network and
protocol. These two findings are combined in chapter 4, which answers ques-
tion 3 by expanding on which peer selection mechanisms are suitable for Direct
Connect. Chapter 5 answers question 4 with a discussion on the challenges of
integrating a suitable peer selection mechanism in Direct Connect. Chapter 6
ends this report with conclusions and future work.

4

Chapter 2

Peer Selection Mechanisms

When downloading a file from a P2P network, the downloading peer has ob-
tained a list of source peers from which it could download from. It then has to
make a decision: How many source peers should it download from? And, per-
haps even more important, which source peers should it download from? This
problem is called peer selection: The downloading peer has to make a selection
on the available source peers.

An important feature of a peer selection mechanism is whether it employs
a Parallel Downloading (PD) scheme or Single Downloading (SD) scheme. In
the SD scheme, a file will only be downloaded from a single source peer at
a time. PD is a technique where the file to be downloaded is divided into
several chunks. Each chunk may be downloaded from a different source peer,
and multiple chunks may be downloaded in parallel. This technique improves
download performance and offers better resilience to the sudden departure or
failure of source peers. The scalability of the overall network, however, is af-
fected negatively if each peer attempts to download from too many source peers
at once. The Degree of Parallelism (DoP) indicates the maximum number of
simultaneous download transfers from a peer. A too low DoP may prevent the
downloading peer from reaching optimal performance, whereas a too high DoP
will impact the scalability of the network. SD can be seen as a special case of
PD with a DoP of 1.

This chapter gives an overview of existing solutions to the peer selection
problem, and is organized as follows. Section 2.1 discusses solutions employing
topology estimation, section 2.2 follows with solutions that attempt to estimate
actual download performance, and section 2.3 discusses general PD schemes.
Finally, a short overview of incentive-based solutions is given in section 2.4.

2.1 Topology Estimation

The goal of topology estimation is to make the application aware of the under-
lying network topology, allowing it to choose peers for which cheaper or shorter
network routes exist. Topology estimation techniques do not provide a complete
answer to the peer selection problem, since they merely rank the source peers
based on some criteria. The downloading peer still has to make a decision on
what PD scheme to use.

5

2.1.1 Oracle-based

In [13] a description is given of how the routing used by P2P overlay networks
ignores all the efforts made by Internet Service Providers (ISPs) to improve
the routing of the underlying network. They describe how the ISPs, who are
in charge of ensuring that the network routes remain efficient, are the most
knowledgeable about the network topology and the routing costs between a set
of hosts.

They proposed an ISP-operated Oracle: A service run by the ISP that, on
request, ranks a given set of peer addresses by the preference of the ISP of
communicating with those peers. P2P applications can obtain IP addresses of
other peers as they normally would. When deciding which peers to interact
with, the application sends its list of IP addresses to the Oracle, and connects
to those the peers that the Oracle ranked highly.

The metrics used for ranking are decided by the ISP. Possible metrics men-
tioned by [13] are:

• Whether the peers are inside the same Autonomous System (AS).

• The number of hops between ASes, as provided by the Border Gateway
Protocol (BGP).

• Distance of the peer to the edge of the AS according to the Interior Gate-
way Protocol (IGP) metric.

• Geographical information.

• Performance information, such as expected delay or available bandwidth.

• Measured link congestion.

The IETF Application-Layer Traffic Optimization (ALTO) Working Group
[2] has focussed its research on Oracle-based peer selection and has developed a
protocol standard for the communication between P2P applications and Oracle
services [36].

The protocol has been implemented and evaluated in [40]. The evaluation is
based on a modified BitTorrent client that uses the Oracle-provided information
to select its neighbouring peers. The results show that the use of an Oracle
allows the ISP to save significant costs by guiding the peer selection process
to use cheaper routes, even when only a subset of the peers query the Oracle
for routing information. No significant change in downloading times has been
observed.

It is argued in [35] that the incentives of ISPs do not necessarily align with
the common goal of providing shorter routes. A Tier-1 AS would profit by
recommending more inter-AS traffic, as their customers pay for the extra transit
traffic. Other ISPs have no incentive to optimize traffic once it has left their
own AS, since they are not responsible for the bandwidth costs beyond that.

2.1.2 Synthetic coordinate systems

Applications can also construct a global coordinate system, as proposed with
Global Network Positioning (GNP) [24]. In their solution, the Internet is
mapped onto a fixed geometric space on which each peer has an absolute coor-
dinate. The architecture for obtaining these coordinates is split in two parts.

6

In the first part, a small set of special peers called Landmarks are created and
initialized with coordinates that reflect their Round Trip Time (RTT) distances.
In the second part of the architecture (figure 2.1), regular peers query the co-
ordinates of each of these landmarks, use Internet Control Message Procotol
(ICMP) ping messages to measure the RTT, and use that to calculate their own
coordinates.

Figure 2.1: The second part of the GNP architecture. An ordinary host queries
three landmarks on the internet and positions itself in a Euclidean Space based
on RTT measurements. Copied from [24].

The requirement of deploying special Landmark peers makes it less suitable
for distributed P2P applications. Vivaldi [23] proposed a fully distributed coor-
dinate system, which does not rely on any such special peers. In their solution,
each peer continuously adjusts its own coordinate based on the measured RTTs
and obtained coordinates from other peers in the system.

In order to rank a list of peers, a downloading peer connects to each source
peer in its list in order to obtain its coordinate, and then ranks the list based
on each peers’ distance to the downloading peer.

Network coordinate systems suffer from a few problems, including the added
signalling overhead of maintaining coordinates by continuously measuring RTTs
and obtaining the coordinates of other peers. The accuracy of a coordinate
system on large-scale deployment may suffer due to the following problems [28]:

Triangle inequality violation The use of Euclidean distances makes the as-
sumption that the triangle inequality is not violated. For instance when
three peers measure each of their RTTs, it is assumed that these measured
values can form a triangle. This is not always true in practice. An exam-
ple is given in [27] with three peers A, B and C, with measured latencies
of 1 ms between A and C, 2 ms between C and B and 5 ms between A
and B. It is impossible to form a triangle with sides of length 1, 2 and 5,
and thus impossible to map the relation between these peers in Euclidean
space.

Churn Peers may join and leave the network at any time. It takes in the
order of a few seconds to a minute before a new peer has settled on a
stable coordinate. Peers may leave before they have obtained a stable
coordinate, and synchronising with such short-lived peers will increase
the error of the coordinates of other peers as well.

7

Drift The centroid of the coordinate system continuously drifts away from the
origin. While this is not a problem for ranking peers by their relative
distances, it does limit the amount of time that a coordinate can be cached.
Coordinates that have not been synchronised too often will be inaccurate.

Malicious behaviour Distributed network coordinates require that each peer
cooperates by providing valid information. Malicious peers can disrupt
the accuracy of the coordinate system by providing false data.

Latency variance RTT measurements between two peers are not always sta-
ble. When an RTT of 10 ms has been measured between two peers, another
measurement a few seconds later may give an RTT value of 100 ms.

Solutions to several of the above problems are proposed in [28], but these in-
crease the complexity and overhead and do not address the problem of malicious
behaviour.

2.1.3 CDN-based proximity

Ono [20] proposed to make use of the existing infrastructure of Content Delivery
Networks (CDN) to aid in peer selection. A large-scale CDN such as Akamai
[1] or Limelight [7] has servers all around the globe, and distribute the load over
these servers by giving a different Domain Name System (DNS) response to each
client based on its location. The goal of this DNS-based redirection mechanism
is to ensure that each client is directed to a server with close proximity to the
client, in terms of RTT or available bandwidth.

Ono makes use of the idea that, if two peers query the domain name of the
CDN and are being redirected to the same server, then they must be close to
each other. In their solution, each peer thus queries a number of large CDNs
and maintains a ratio map of the received responses. Peers then exchange
each others’ ratio maps and use cosine similarity to determine the approximate
distance between each other.

The overhead of continuously querying a set of DNS servers amounts to ap-
proximately 18 kB upstream and 36 kB downstream per day, and the overhead of
exchanging the ratio maps between a downloading peer and its potential source
peers is expected to be relatively small. The use of CDN-based information only
works well to rank peers that are relatively close to each other. When none of
the source peers receive DNS responses similar to the downloading peer, their
ratio maps will be orthogonal and no proximity information can be determined.

Ono has been implemented as a plugin for the Vuze BitTorrent client and de-
ployed among over 100,000 users. The results indicate significant improvements
in shorter path selection and in the resulting transfer rates when compared to
classic BitTorrent peer selection.

2.2 Performance Estimation

Performance estimation is a category of techniques that try to get an estimate
on how well a connection between two peers is going to perform. These estima-
tions can be based on RTT measurements or by actually transferring some data
over the network and measuring its bandwidth. Unlike the topology estimation

8

techniques discussed in the previous section, performance estimation does not
use network proximity: If there is a fast peer on the other side of the globe and
a slow peer available in the same building of the downloading peer, performance
estimation will favour the faster peer.

Some performance estimation techniques implement a PD scheme, while
others are only described in the context of SD. The PD scheme used will be
described separately for each solution.

2.2.1 Local RTT measurements

The authors of [47] discuss the client-server situation in which an FTP client
can choose to download a file from a known set of servers that each provide the
same file (mirrors). They proposed a solution where the client measures the
RTT for each mirror, and then selects a number of highest-ranked mirrors to
download from.

Figure 2.2: Architecture of the scalable parallel FTP downloading client. The
manager thread queries the RTT times of the server (2), and assigns chunks
to be downloaded to each worker thread (3,4). Progress is monitored by the
monitor thread (5). Copied from [47].

Their PD scheme is as follows. The client splits the file into DoP chunks
of proportional size to the measured RTT values, and requests these chunks
simultaneously from the selected mirrors. A separate manager thread monitors
the download progress for each of the chunks, and dynamically re-assigns the
chunk of the slowest mirror to a faster one that is about to finish. Figure 2.2
displays the architecture of their client implementation.

As a result, the client downloads from DoP mirrors simultaneously at the
start of the file transfer, but as the faster mirrors finish their chunks the slower
mirrors will get disconnected. Towards the end of the file transfer, less mirrors
are used for downloading. When compared to random mirror selection, their
solution requires a lower DoP to saturate the bandwidth of the client, and
therefore improves the scalability of the network.

As their solution was designed with static FTP mirrors in mind, the as-
sumption is made that all mirrors are known to the client before starting the
download, and that each mirror stays online for the entire duration of the trans-
fer. These assumptions often do not hold in P2P systems.

9

2.2.2 Machine learning

In [16] the peer selection process of a Gnutella client is studied, and an adaptive
solution that employs machine learning techniques is proposed. Their solution
consists of two phases.

In the first phase, passively collected information is used to rate each source
peer in terms of the expected transfer time. This information consists of at-
tributes provided by the P2P network, such as the peers current load, whether
it has successfully uploaded a file before, whether it’s behind a firewall or not,
and its indicated maximum available bandwidth. In order to automatically
learn the correlation of this information with the expected transfer times, these
attributes have been collected for a large set of peers and their actual bandwidth
has been measured. This dataset has been used as training data in a machine
learning algorithm with the goal of constructing a decision tree (figure 2.3).

Figure 2.3: Example data set and a possible decision tree constructed from it.
The decision tree is a “compressed” form of the data set, and provides an if-
then-else-style function for mapping the input values A, B and C to an output
value F and a measure for the confidence of this value E. Copied from [16].

The resulting decision tree is then used to construct a function that, given
the passively collected attributes of a newly discovered peer, returns its expected
upload rating. This rating is relative to the peers in the learning data, indicated
in values of VLS (Very Likely Slow), LS (Likely Slow), U (Uncertain), LF (Likely
Fast) and VLF (Very Likely Fast). This function allows the downloading peer
to rank a list of source peers without requiring prior network measurements.

In the second phase, the downloading peer uses the ranked list of source peers
to perform a sequence of partial downloads, eventually settling on one peer. A
Markov Decision Process (MDP) is used to model and direct the choices of
the downloading peer. The behaviour of the downloading peer is modelled in
a connecting and a downloading phase. In the connecting phase, the peer is
attempting a connection with the next source peer. This phase lasts at most 3
seconds, if no connection has been established in that time a new source peer
is chosen. If a connection has been successful, the downloading phase begins.
If 3 seconds have passed in this phase, the peer will commit to download the

10

rest of the file from this source peer, and the peer selection process has ended.
An MDP guides the peer through this process by choosing between two actions:
Either to continue with the current peer, or to start over in the connecting phase
with a new peer. Such an action is chosen every 0.5 seconds in the connecting
phase and every 1.0 seconds in the downloading phase. Time is used as the cost
function, in order to make a decision that minimizes the total transfer time of
the file.

Their solution uses a large dataset in order to generate the decision tree,
and they have shown that peers with different network configurations generate
a different decision tree, specifically tailored towards the configuration of the
peer. As such, it is preferable to have each peer generate its own decision tree.
In order to do this, it will need to actively use the network for a substantial
amount of time to obtain enough data, which is not practical for many users.
Furthermore, the machine learning approach reacts slowly to changes in the
network or the to configuration of the peer.

Most of the attributes used for ranking each peer are provided by the peer it-
self. A malicious peer is thus capable of influencing its own ranking by observing
which attributes are favoured by the decision tree and sending false information
to the network.

The proposed downloading process uses the SD scheme. While the authors
claim that their solution can be extended to implement the PD scheme, they
do not describe how.

2.2.3 Random periodic switching

Observations in [18, 17] indicate that P2P systems often provide worse down-
loading performance in practice than systems using a centralised network ar-
chitecture. They attribute this to two factors: Spatial heterogeneity in the
available service capacities, and temporal correlations in the service capacity of
a given source peer.

Heterogeneity refers to the idea that service capacities from different source
peers are very different. Each peer is connected to the internet with a different
physical connection, each with different bandwidth constraints and each with
different network properties. These factors are relatively constant, and don’t
change over the timescale of a typical P2P session.

There are, however, factors that do not remain constant within a P2P ses-
sion. The provided service capacity of a source peer may fluctuate drastically
even over time periods of a few minutes. These fluctuations may be caused by
the varying number of peers downloading from a single source peer at a time,
other applications running on the PC of the source peer that cause a sudden
increase in network usage, or temporal congestion at any link in the network.
Figure 2.4 displays how the available bandwidth between two peers typically
changes over time.

In order to remove the effects of both heterogeneity and correlation from
the file download time, they propose the following downloading algorithm. The
downloading peer randomly chooses a source peer to download from, and keeps
using this peer for a fixed duration. After a timeout (e.g. 5 minutes), the
downloading peer disconnects the current source peer, chooses a new random
peer, and continues downloading from that one. This repeats until the download
has completed.

11

Figure 2.4: Typical variation in end-to-end bandwidth between two peers. Time
scale is in the order of minutes. Copied from [18].

Unlike to chunk-based assignments, this random periodic switching algo-
rithm guarantees that the downloading peer will not get stuck downloading
from a very slow source peer, thus significantly decreasing the total file down-
load time in such a case [29]. The algorithm is explained for the SD scheme, no
suggestions are made on how to use it together with the PD scheme.

Random periodic switching does not provide an optimal download strategy.
The uniformly random nature of the peer selection mechanism will not favour
peers with more service capacity over peers with less available bandwidth. The
overhead of opening a connection to a new peer is not taken into account, either.

2.2.4 Biased random periodic switching

An improvement on random periodic switching was proposed in [19, 17]. Instead
of connecting to only a single source peer at a time, they employ a PD scheme.
In each time period, the downloading peer opens a random number of parallel
connections to a set of selected source peers, and keeps downloading from them
within that period. As in random periodic switching, the peers to connect to
are chosen randomly from the set of source peers. However, instead of applying
the uniform random selection used in the former solution, each source peer is
now assigned a value describing the probability that the downloading peer will
connect to that source peer in each period. The probabilities are chosen such
that the sum of all probabilities is equivalent to the desired DoP. This means
that, while the actual number of active connections at any time may be lower or
higher than the desired DoP, the average number of active connections should
still converge to the DoP.

They have derived an optimal probability assignment algorithm that mini-
mizes the average file download time, while taking into account the heterogene-
ity and stochastic fluctuation of the network and the competition between all
downloading peers in the network. These probabilities are obtained by solving
the following optimization problem:

max

∑
j∈S [1− (1− pj)

|D|]cj∑
j∈S cj

s.t.
∑
j∈S

pj = L, 0 ≤ pj ≤ 1

Where S denotes the set of source peers, |D| the number of competing down-

12

loading peers, L the desired average DoP, and cj and pj the expected service
capacity and assigned probability for peer j, respectively. A solution for pj is
given in [19], but has been omitted here for brevity.

As this algorithm requires knowledge about |D| and cj , it is impractical
for use in a distributed P2P environment. They therefore propose a second
algorithm that allows the downloading peer to create estimates for these values
while downloading from each source peer in a sequence of periods. In order
to estimate |D|, the downloading peer needs to be able to obtain information
about the number of peers that each source peer is uploading to.

While their solution includes a PD scheme, they do not provide an algorithm
for assigning file chunks among the selected source peers. The overhead of
opening a connection to a new peer is not taken into account in their analysis,
nor are the effects of churn.

2.2.5 Chunk-based probing

Another improvement on random periodic switching has been proposed in [30].
Their solution divides the file to be downloaded into equally-sized chunks, and
dynamically assigns these chunks to source peers. Only one chunk is downloaded
at a time.

Their proposed algorithm works in two stages. In the first stage, the down-
loading peer downloads one chunk from each source peer in sequence and mea-
sures the received capacity of the source peer. If this measured capacity is higher
than a certain threshold, the peer is considered a high-capacity source peer, oth-
erwise it is a low-capacity peer. The first stage ends when all file chunks have
been downloaded, when a high-capacity source peer has been found, or when all
source peers have been probed. In the second stage, the download peer will con-
tinue to download the file from the high-capacity source peer if one was found,
or the highest-capacity peer if all source peers were probed.

The previously mentioned threshold determines when a high-capacity source
peer is found. If it is too low, then the download may continue from a slow
source peer even when a faster one exists. If the threshold is too large, then
the time spent in the probing stage will be too large. They provide an equation
for obtaining the optimal threshold given the number of source peers, number
of chunks and the expected (uniform) distribution of the service capacities of
the source peers. In practice, the expected service capacities are not known in
advance and are not uniformly distributed.

While the authors explain the problem of peer selection in the context of
unpredictable variations in the available service capacities, they provide no in-
dication of how their solution deals with these problems. In fact, it is perfectly
possible for a source peer to provide a high service capacity in the probing
phase, but then degrade significantly after the downloading peer has selected
it for downloading. It is also possible for the downloading peer to get stuck on
a very slow source peer in the probing phase, thus causing the download time
to increase indefinitely. Chunk-based probing makes use of the SD scheme, PD
has been noted as future research.

13

2.3 Parallel Downloading Techniques

Many of the peer selection mechanisms discussed in the previous section already
included algorithms for PD. However, PD can also be viewed as a separate
problem. Given a file you want to download and a set of source peers which
have that file, the previous solutions provided an answer to the question of
which peers you should connect to, and only some mentioned how the file should
be split up in chunks and assigned to each source peer. Parallel downloading
mechanisms only provide an answer to the latter question.

2.3.1 Dynamic Parallel Access

The authors of [38] discuss the situation in which a HTTP client wishes to
download a file that has been replicated over multiple HTTP servers. They
propose a very simple strategy in which the client divides the file into many
small chunks (number of chunks � the number of servers). The client then
requests one chunk from every server. As soon as a chunk has been completed
from one server and the file has not been completely downloaded yet, a new
chunk is immediately requested from the same server.

In this scheme, the file will thus be downloaded from all servers simultane-
ously. As each chunk is dynamically requested from a server only once it has
finished with a previous chunk, faster servers are automatically assigned a larger
portion of the file. A major benefit of using all servers, in the previously de-
scribed context, is that the downloading peer no longer has to make a selection
at all.

A problem with this approach is that there is a small delay, corresponding to
one RTT, between finishing a previous chunk and starting a new one (figure 2.5).
The authors propose to use a technique called pipelining to avoid this delay.
The downloading peer can send a requests for the next chunk a little before the
current chunk has finished, thus allowing the server to immediately follow up
with the new chunk without delay.

Figure 2.5: Idle time between two block (chunk) requests. Copied from [38].

Another problem is the issue with the last stage of the download. Not
all servers finish their chunk at the same time, so it’s possible that the peer
gets stuck on a few slow servers near the end of the transfer. To remedy this,
they propose that the peer requests any remaining chunks from multiple servers

14

simultaneously, and throws away any data offered by slower servers. They argue
that the bandwidth wasted on duplicate data would not be very significant,
thanks to the small size of each chunk and the fact that any disconnected servers
have not sent a full chunk yet.

Two major problems not addressed are the signalling overhead and scalabil-
ity issues. Due to the small chunk size, a peer has to send out requests for new
chunks rather often. Each request and response add a bandwidth overhead that
becomes more significant the smaller the chunk sizes are chosen. The problem
of scalability applies to both the downloading peer and the server. On the server
end, if many peers use this parallel downloading technique, then the server has
to handle many more TCP connections than strictly necessary, and can easily
get overloaded with requests. The service provided by each individual server
degrades significantly as more peers make use of it. Even on the side of the
downloading peer, scalability becomes an issue for files that have been repli-
cated over many servers — peers do not always have powerful machines and
may not be capable of handling hundreds of connections. A peer may also be
behind a low-end router that is only capable of handling a limited number of
TCP connections. Thus, in practice, a peer will still need to make a selection
among the available peers.

2.3.2 Adaptive Dynamic Parallel Downloading

Adaptive Dynamic Parallel Downloading (adPD) [48] and Speculative Parallel
Downloading (sPD) [26] are two similar PD schemes that minimize the required
signalling overhead. They do this by dynamically adjusting the chunk size
according to the observed download speed of each source peer.

The algorithm works as follows. The downloading peer divides the file into m
equally sized chunks, where m is equivalent to the number of source peers. Each
chunk is then requested from a source peer. When a chunk has been successfully
downloaded, the downloading peer calculates the expected download time for
each active chunk and reassigns the source peer that just finished to help out
with downloading the chunk with the longest expected download time. The
remaining part of this chunk is divided in two parts with proportional size to
the measured download speeds of the source peers. Since the first part of this
chunk is still being downloaded from the source peer, no signalling is required.
The second part of the chunk is requested from the peer that just finished. In the
special case that the remaining chunk size is smaller than a certain threshold,
the chunk will not be split in two, but will be assigned in full to the faster peer
instead.

While the authors of [48] mention that their solution does not require the
downloading peer to interrupt any ongoing chunk downloads, they do not de-
scribe what happens after a chunk assigned to a peer has been split in two —
thus decreasing the chunk size that the peer has to offer — and the peer has
completed its assigned chunk. In that situation, the source peer is not aware
that its assigned chunk size has decreased, and will send file data that has been
reassigned to another peer. In [26] it is made clear that their solution does
require interrupting the download process.

15

2.3.3 Minimum-Signaling Maximum-Throughput

Minimum-Signaling Maximum-Throughput (MSMT) is an algorithm proposed
by [45]. The goal is again to allocate chunks to different source peers in such a
way that it minimizes signaling overhead while obtaining the maximum through-
put. MSMT achieves this by obtaining a Bayesian estimate of the available
bandwidth from each source peer.

The algorithm works as follows. The downloading peer first downloads a
small fixed-size chunk (say, a few kilobytes) from each source peer in parallel.
While doing this, it measures the average received service capacity for each peer
and tries to obtain an estimate on the size of each peers’ upload queue. This
estimate is later used in updating the Bayesian estimate of the bandwidth for
each peer. The remaining part of the file is then divided in chunks propor-
tional to the measured bandwidth of each peer, and each chunk is requested for
downloading.

When one chunk finishes downloading, the downloading peer again calculates
the average service capacity received from each source peer for the requested
chunk, and updates its Bayesian estimate of the available bandwidth of the
source peer. It then interrupts all ongoing downloads, and uses the bandwidth
estimates to assign new chunks of proportional size to each source peer. The de-
tails of the bandwidth estimation calculation are not relevant for this discussion
and have been omitted here for brevity. A detailed explanation can be found in
[45].

MSMT has been evaluated in both simulations and implemented and tested
on the Planetlab platform [21]. The results indicate that the use of Bayesian
estimates instead of only relying on the most recent measured average band-
width improves the assignment of chunk sizes to source peers, and therefore
decreases the number of chunk re-assignments and their associated signalling
overhead by around 10 to 30%. Their simulations and measurements did not
include the actual file download time experienced by the downloading peer, and
no information is given on how significant the decrease of signaling overhead is
on these downloading times.

MSMT only deals with assigning chunk sizes to source peers, no solution is
given on how these chunks need to be allocated within the file. Their chunk
size assignment algorithm does not guarantee that it is even possible to allocate
contiguous chunks in each (re)assignment, and may cause a single chunk assign-
ment to become fragmented over different file blocks. Chunk fragmentation will
require additional signaling overhead in order to tell the source peer which byte
ranges it should send. This problem has not been mentioned by the authors,
and it is unclear whether this overhead has been included in the test results.

The initial probing phase, where a fixed-size chunk is downloaded from each
source peer, may stall the downloading process for an indefinite amount of time
if there is a very slow source peer.

As with adPD and sPD, MSMT requires the chunk downloads to be inter-
ruptible in order to perform the reassignments.

16

2.4 Incentive-Based Peer Selection

A common problem with P2P file sharing networks is that peers do not always
have a strong incentive to upload data. Providing other peers with the data
they want costs bandwidth and computer resources, but does not provide an
immediate gain to the user who is uploading. Yet, in order for the overall P2P
network to function, there must be enough users who do upload data.

A possible solution to incentivise uploading is to adjust the peer selection
process to favour peers that regularly share their resources with others. By
doing so, these peers will get priority when they themselves request something
of the network.

Many such peer selection algorithms are described in literature [42, 12, 46,
39, 44, 32], but due to the limited applicability of incentive-based peer selection
mechanisms to the Direct Connect network, only the algorithm used in the
original BitTorrent implementation will be described in order to give a general
idea about how these work.

2.4.1 BitTorrent

The BitTorrent file sharing protocol [22] employs, among other techniques,
incentive-based peer selection in a tit-for-tat fashion. In BitTorrent, a file is
divided into many equally-sized chunks, called pieces. Peers exchange bit masks
with each other to indicate which pieces each peer has. Peers can then request
pieces from each other.

The peer selection algorithm works with a mechanism called choking. Each
peer may be connected to many other peers, but only a small number of connec-
tions is actually used for data transfers. These connections are unchoked, that
is, peers can only exchange pieces on an unchoked connection. All other con-
nections are said to be choked, and are used only to exchange information about
how the pieces are distributed among the peers and which peers are interested
downloading new pieces.

Each peer chooses a number of random peers to connect to, exchanges the
bit masks, and then unchokes a small number of connections — typically four
— in order to trade pieces. This trading provides an incentive for both peers
to upload pieces. If either of the peers refuses to upload a piece, the connection
may be choked again and neither can download. In order to find faster peers
and to give new peers a chance to get started, a mechanism called optimistic
unchoking is used. At any time, there will a single connection that is unchoked
regardless of whether the other peer is uploading or not. Every 30 seconds, the
peer will choke the connection with the lowest upload speed and randomly select
another connection to unchoke.

17

Chapter 3

Overview of Direct Connect

Direct Connect (DC) [3] is a hybrid Peer-to-Peer file sharing network developed
in the late 1990s. It provides the following features to its users:

User management Everyone can obtain obtain a listing of other users on the
network. This list includes some basic information such as a nick name,
upload speed, a user-provided description and email address.

Instant messaging Chat messages can be broadcasted over the network, form-
ing a large chat channel in the same spirit as in Internet Relay Chat (IRC).
Private messaging between users is also possible.

File sharing Users can select one or more directories on their local hard drive
to share with other users on the network. All files are idenfitied by a
cryptographic hash function (Tiger Tree Hash, TTH) over their contents.

File searching and browsing Users can search the network for files shared
by others. It is also possible to browse through the shared directories of a
specific user.

There exists two separate network protocols for DC. The original protocol is
commonly called NMDC, named after its original implementation, NeoModus
Direct Connect. While this protocol has never been officially documented,
reverse-engineering efforts have given rise to a number of open source clones of
the original implementation. As the popularity of the original implementation
had fallen, these clones had taken over further development of the protocol and
added several extensions in order to improve scalability and reliability. More
recently, an alternative protocol called Advanced Direct Connect (ADC) has
been developed as a replacement for NMDC. ADC attempts to address some
issues in the NMDC protocol, and is otherwise very similar to NMDC in terms
of concept and terminology. The ADC specification is split up in a mandatory
BASE protocol [41] and a separate document specifying the various optional
extensions [43].

There have been many different client implementations for DC, but only a
handful have been updated to keep up with the backwards-incompatible protocol
changes that have been made over the years. As such, only a few clients are
still in active use today, these include DC++ [3] and its various derivatives,

18

including but not limited to StrongDC++ [10] and EiskaltDC++ [4]. Jucy [6]
and Ncdc [8] are two modern clients that are not based on DC++.

The main focus of this research is on the more recent ADC protocol, but
many of the ideas discussed in this report apply to NMDC as well.

Section 3.1 provides a high level overview of the direct connect network
concepts, followed by a more in-depth explanation of the connection initiation
protocol in section 3.2, content and peer discovery in section 3.3 and the be-
haviour of uploading peers in section 3.4. This chapter ends with an overview
of the currently used peer selection strategies in section 3.5.

3.1 High-level overview

The architecture of a DC network is conceptually simple. There are three en-
tities in the DC network: Clients, Hubs and Hublists (Figure 3.1). A Hub is a
TCP server that clients can connect to and it provides services to allow clients
to discover and communicate with each other. A single Client can be connected
to multiple hubs simultaneously. A Hublist is a central entity, commonly hosted
on a web server and accessed over HTTP, that provides a list of publicly avail-
able hub addresses. A Hublist is not required for the functioning of the DC
network, they merely help users with finding new hubs to connect to.

Hublist

Hub

Client

Figure 3.1: Architecture of a small DC network with two hubs and two Hublists.
Two clients are connected to both hubs. Some clients that share the same hub
have a direct connection with each over, indicated with a dotted line.

On the network level, the hub provides the following services:

User authentication Users log in to the hub with a user name — often called
a nick. If the user is registered to the hub, it needs to provide a password
as well. The hub is responsible for ensuring that the nicks are unique
within the context of the hub and that the same user doesn’t connect to
the hub multiple times.

User list synchronisation The list of all users connected to the hub is syn-
chronised to all connected clients. The following information is commonly
distributed: Nick, IP address, e-mail address, description, upload speed,
number of slots (described in section 3.4), number of other hubs the client
is connected to, and the total size of the users’ shared files. Many of these
fields are provided by the user and are therefore not always reliable. Some
hubs remove fields or do not keep all information updated in order to save
bandwidth.

19

Routing chat messaging Chat messages can either be broadcasted to all con-
nected clients — which is often considered the “main chat” of a hub — or
they can be sent to a specific user to allow for private messaging1.

Routing search queries Search queries for specific files are routed through
the hub. Discussed in more detail in section 3.3.

Facilitating connections The hub relays messages between two clients in or-
der to initiate a direct connection between them. This is discussed in more
detail in section 3.2.

Hubs differentiate themselves in many ways. Many require that a user shares
a certain minimum amount of data before they are accepted. Some are specifi-
cally targeted at users in a geographical location or with specific interests, e.g.
certain types of files or a specific musical genre. Many hub operators contin-
uously monitor the behaviour and shared files of their users, either manually
or automatically, in order to discourage free-riding [34, 14] and to ensure that
everyone only shares files allowed according to rules imposed by the hub. Not
all hubs are public: DC is also commonly used in local area networks, where
users communicate and exchange files using a hub running on the local network
itself.

3.2 Connection initiation

The hub is not involved in the actual file transfer process. Instead, peers2

wishing to exchange files need to be able to create a direct connection with each
other. A distinction is made between two client modes: active and passive. A
peer capable of accepting incoming connections from the outside is considered
active, whereas a peer behind a firewall or Network Address Translator (NAT)
is passive.

The public IP address and the TCP port on which active clients accept
incoming connections is part of the user list and thus distributed to all peers.
When an active peer A wishes to open a connection with another peer B, the
following steps are taken (figure 3.2a):

1. A sends a “Connect To Me” (CTM) message to the hub, indicating that
it should be routed to B.

2. The hub routes the CTM message to B.

3. The IP address and TCP port of A are already known to B through the
user list provided by the hub, so B can open a TCP connection to A.

The above steps only work if the initiating peer is active. If peer A is passive
and peer B is active, the connection is initiated as follows (figure 3.2b).

1. A sends a “Reverse Connect to Me” (RCM) message to the hub, indicating
that it should be routed to B.

1Private messages are, however, not completely private. They are still routed through the
hub in plain text.

2Peers, in this context, are the clients, since those are the only nodes in the DC network
capable of doing file transfers.

20

2. The hub routes the RCM message to B.

3. B replies with a CTM message to the hub.

4. The hub routes the CTM message back to A.

5. A opens a TCP connection to B, using the information provided by the
user list.

1 2

3

(a)

1 2

34

5

(b)

Figure 3.2: Connection initiation between two peers. The initiating peer is
active in (a), passive in (b).

Note that, in the passive situation, peer A already knew the public IP ad-
dress and TCP port of peer B even before sending the RCM message, so it
could have skipped step 1–4 and simply opened the connection to peer B with-
out involvement of the hub. This is not done in practice, however. Both the
CTM and RCM messages contain a unique token. This is a random string that
allows the active peer to reliably identify from which hub and from which user
an incoming connection originated. The use of this token is mandated in the
protocol, so it is not possible to open a connection without involvement of the
hub.

In the BASE protocol, it is not possible for peer A and B to create a direct
connection with each other when they are both passive. A NAT traversal tech-
nique based on TCP Hole Punching [25] has been implemented as the NATT
[43] extension for the ADC protocol. This extension can allow for two passive
peers to still create a direct connection with each other, but does not work for
all NATs and doesn’t solve the problem of restrictive firewalls. The steps to
open a connection between peer A and peer B are as follows (figure 3.3):

1. A sends an RCM message to the hub, indicating that it should be routed
to B.

2. The hub routes the RCM message to B.

3. B replies with a ‘NAT’ message that includes the local TCP port with
which B is connected to the hub.

4. The hub routes the NAT message to A.

5. A attempts to open a TCP connection to B with the received port. Simul-
taneously, it replies with a “Reverse NAT” (RNT) message to the hub,
which includes its own local TCP port.

6. The hub routes the RNT message to B.

21

7. B attempts to open a TCP connection to A with the received port.

The connection succeeds when either connection attempt from A to B or
from B to A succeeds.

1 2

34

5

5 6

7

Figure 3.3: Connection initiation between two passive peers using NAT traver-
sal.

Two peers can not exchange files if they are unable to establish a direct
connection with each other. The protocol does not provide a mechanism to
allow file transfers through intermediate peers as fallback.

3.3 Content and peer discovery

Users can find files by sending a search request to the hub. The hub will broad-
cast this message to all3 other peers, which then send back a response if they
have found something in their locally shared files. Responses are sent back via
the hub if the searching peer is passive or via UDP otherwise. A Response
includes the number of available upload slots of the responding client (see sec-
tion 3.4) and the size, hash and full path of the file.

Such a flooding search is an expensive operation, and almost all hubs have
restrictions on how often a peer is allowed to search. The minimum interval
between two search requests from a single peer often varies between 15 seconds
and one minute.

Search requests come in two forms: Keyword search and hash search. Key-
word searches are usually initiated directly by the user in order to find files
matching certain filters. Such a search can be used to find, for example, video
files smaller than 500 MB with “farbrausch” in the file name, or directories
named “linux”. Hash searching is used to find peers who have a file that matches
a specific TTH hash, and is often used by clients to (automatically) find alter-
native peers to download a file from. As an optimization, the BLOM [43] ADC
extension allows clients to send a bloom filter of all their file hashes to the hub,
giving the hub the opportunity to avoid a broadcast for hash searches.

In addition to flooding, a peer can request the file list of another user. This
works like a regular file transfer: The requesting peer initiates a connection with
the other peer, and requests the special file files.xml.bz2. This XML file
is a representation of the directory structure shared by the user and includes
the name, size and hash of each shared file. Some clients also include other

3Or, in some cases, a subset. E.g. If the searching peer is passive, then the message may
not be forwarded to other passive peers.

22

information like audio/video bit rates or image resolution. The size of this file
list grows with the number of files that the user has shared, and usually ranges
between a few kilobytes and several megabytes.

The StrongDC++ client has extended the DC network with a global DHT
based on Kademlia [33], allowing a peer to perform hash searches without in-
curring the overhead of flooding the network and without being restricted to
the limitations imposed by the hub. This feature, however, is not widely used
and only few peers participate in this DHT.

3.4 Uploading peers

Each peer has a set of local files which it shares with the other peers in the
network. The number of peers that can simultaneously download from an up-
loading peer is restricted by the uploading peer. In DC terminology, this is
called the slot count, where a slot represents one upload transfer. This number
can be configured by the user, and usually varies between 1 and 20.

Two strategies are currently in use for assigning slots to downloading peers.
The most simple strategy is queue-less assignment: When a downloading peer
requests a file, it is immediately assigned a slot if the uploading peer has a slot
free. The downside of this approach is that it rewards peers that continuously
hammer the uploading peer with download requests over peers that have a longer
retry interval.

An alternative strategy that is recently being adopted in many clients is to
use a FIFO queue. When a downloading peer requests a file, the peer is added
to an upload queue. When a slot becomes free, the uploading peer waits for the
next peer in the queue to request the file again, and assigns it the slot. A peer
is removed from the queue if it has not sent a file request within a timeout, so
it must still continue to poll4.

A peer can bypass this slot assignment process in the following cases.

• An additional number of slots (usually 3) is allocated for files below a
certain size5 or for the special files.xml.bz2 file, in order to prevent
long waiting times for short transfers. These are called minislots in DC
terminology.

• A user can also grant a slot to another user, allowing the other user to
download files regardless of how many slots are taken by the uploading
peer.

• Many clients have a feature to automatically create new slots if the cumu-
lative upload speed is lower than a certain configurable threshold. This
prevents the case where an uploading client has all its slots assigned to
slow peers, and still has enough bandwidth available to handle more file
transfers.

Due to these special cases, the total number of active upload transfers is not
strictly bounded by the configured slot count.

4Some clients implement a queue notification mechanism, where the downloading peer is
notified as soon as a slot has become free. This is, however, not widely used.

5Commonly 64 kB, but the recently released DC++ 0.802 has increased this to 512 kB. In
most clients this default size can be overridden by the user.

23

The ADC protocol specifies that the connection between two peers is in
a special state while it is used for a file upload. In this state, the uploading
client does not accept a new request for data until the current file transfer has
been completed. In at least DC++ (0.802) and ncdc (1.14), the client still
reads new incoming messages from the TCP connection, but ignores (DC++)
or disconnects (ncdc) the other peer upon receiving a new request while a file
transfer is active. As a result, downloading clients can not currently use the
pipelining technique discussed in section 2.3.1.

3.5 Peer Selection Strategies

A number of peer selection strategies have been used by both historical and
modern DC clients. This section only discusses the mechanisms in use by the
current versions of ncdc (1.14), DC++ (0.802), and Jucy (0.86). The various
derivatives of DC++ tend to use the same peer selection strategies as the main
DC++ client.

All clients implement a download queue — a list of files that the user wishes
to download (figure 3.4). For each file in the queue, the client maintains a list
of peers from which the file can be obtained. It is common for a single peer to
be listed with multiple files in the queue. All clients provide functionality to
allow the user to prioritize the downloading of certain files over others.

Figure 3.4: Screenshot of the download queue view in ncdc. The top pane
displays the list of queued files, the bottom pane the list of users that have the
selected file.

All clients have a configurable limit on the Degree of Parallelism (DoP).
This is called the number of download slots in DC terminology, analogous to
the upload slots discussed in section 3.4.

Of the three clients mentioned above, the peer selection mechanism in ncdc
is the most primitive. Ncdc tries to establish a connection with all unique peers
in the download queue. As soon as a connection has been established, the file
with the highest priority available from that peer is requested for downloading.
If that file is already being downloaded from another peer, the next file in the
queue is requested instead. If there are no more files in the queue for that
particular peer or if all download slots are in use, nothing is requested of the
peer and the connection will be closed after a timeout.

An effect of this approach is that, since all peers are connected to simulta-
neously, file transfers are assigned to the peers that have a faster connection

24

time and peers that have a slow connection time do not stall the peer selection
process. However, the selected peers may not necessarily be the fastest peers
in terms of bandwidth, and no attempts are made to try other peers once all
download slots are in use. While multiple files can be downloaded simultane-
ously, ncdc does not employ PD — If there is only a single file in the download
queue, then there will never be more than a single transfer at a time.

The peer selection mechanism in DC++ is roughly similar to ncdc, but has
a number of improvements. In order to prevent a download slot from being
“wasted” on a slow or inactive source peer, DC++ has an option to disconnect
a peer if the received download speed is lower than a configurable threshold.
This setting defaults to 1 kB/s.

DC++ implements a PD6 scheme by requesting dynamically-sized file seg-
ments from each source peer. The first segment requested from a source peer
is relatively small (say, 256 kB), but the segment size for subsequent requests is
adjusted to approximate a download time of 2 minutes per segment. The calcu-
lation of the next segment size is based on the size of the previously downloaded
segment and the time it took to download. Two subsequent segment sizes differ
at most by a factor of two.

Jucy also implements PD, but takes a different approach to assigning seg-
ments to peers. Instead of requesting small chunks like DC++, Jucy requests
the entire remainder of the file from the first peer with which a successful con-
nection has been made. When a second connection is made with another peer
for the same file, the remainder of the file is split in two evenly-sized segments,
and the second segment is requested from the new peer. The peer that was
previously assigned the full remainder of the file can continue to download until
it reaches the start of the second segment. At that point Jucy has to interrupt
the download by disconnecting the peer.

6Parallel downloading is often called segmented downloading or sometimes multisource
downloading in DC terminology.

25

Chapter 4

Peer Selection in Direct
Connect

This chapter looks back at the peer selection mechanisms discussed in chapter 2,
and an evaluation of each mechanism is given based on a list of criteria. The
goal of this chapter is to find both a peer selection mechanism and downloading
algorithm suitable for use in Direct Connect.

This chapter is organized as folows. The criteria used for evaluation are de-
scribed in section 4.1. Sections 4.2, 4.3, 4.4 and 4.5 offer evaluations of the peer
selection mechanisms described in sections 2.1, 2.2, 2.3 and 2.4, respectively. A
final comparison of all solutions is provided in section 4.6.

4.1 Criteria

The following criteria will be used to evaluate each peer selection mechanism.

Integration How well will the solution integrate into the existing Direct Con-
nect network? That is, which and how many nodes need to be modified
for this the solution to be effective? Ideally, a downloading peer that im-
plements the new peer selection mechanism can benefit from it even if no
other peers in the network have been modified.

Structure awareness A peer selection mechanism may make assumptions on
the structure of the P2P network in which it may be used. The solution
should fit within the structure of the Direct Connect network.

Parallel downloading The peer selection mechanism should use a PD scheme.

Dynamicity The list of source peers in DC is very dynamic — new peers are
found and existing peers may leave while the file download is in progress.
It is important that the peer selection process can handle this dynamicity.

Scalability The solution should scale well as the network grows. In particular,
the number of connections with other peers, messages exchanged, or data
to process should not increase significantly as the number peers in the
network grows.

26

Signaling overhead The solution should not add too much overhead in the
form of messaging.

Security The peer selection mechanism should provide acceptable service even
in the face of incorrect and/or malicious peers.

Performance The ultimate goal of any solution should be to select the best
peers suitable for downloading and to be able shorten the time it takes to
download a file.

4.2 Topology Estimation

Topology estimation is a class of techniques that provide a ranking of source
peers based on their (network) proximity. The existing techniques have been
described in section 2.1.

Two of the criteria mentioned in section 4.1 can be evaluated for topology
estimation techniques in general.

Structure awareness Topology estimation techniques, in general, optimize
the case where source peers are distributed over the entire globe. In Direct
Connect, many hubs focus on users in a particular geographical area, and
even ISP-local hubs are not uncommon. Topology estimation techniques
may not provide significant improvements with such hubs. Direct Connect
is also used in LAN environments, but that case is not considered by any
of the topology estimation techniques discussed below.

Parallel downloading Since topology estimation techniques merely provide a
ranking of source peers and not a downloading algorithm, none of these
solutions provide a PD scheme. A separate PD algorithm should be used
when choosing a topology estimation technique.

The other criteria will be evaluated separately for each topology estimation
technique in the following subsections.

Regarding the ‘Performance’ criteria, it should be noted that topology esti-
mation techniques do not include a downloading algorithm, and it’s therefore
not possible to say anything about their effects on the actual download time.
Furthermore, the goal of topology estimation is to find peers within a close
proximity, but such peers may not necessarily provide the highest bandwidth.
What can be meaningfully said about the performance of topology estimation
techniques is the accuracy of the proximity estimates. This is what will be
discussed for the Performance criteria in the sections below.

4.2.1 Oracle-based

In an Oracle-based peer selection technique, each downloading client will query
one or more centralised servers to obtain proximity information for all source
peers, as described in section 2.1.1.

Integration No changes to the Direct Connect protocol are necessary at all for
a client to rank peers, so any downloading peer capable of talking to an
Oracle can benefit from the improved peer selection. This does, however,

27

assume that the infrastructure that provides the Oracle already exists for
a particular user. This infrastructure is independent of Direct Connect.

Dynamicity The downloading client can query the Oracle each time a new
source peer appears to obtain its ranking within the list of source peers,
so this solution has no problems with handling dynamic peer lists.

Scalability Each client only has to contact a fixed number of Oracle servers,
and the size of the information to be exchanged is dependent only on the
number of source peers. This does not hinder the scalability of the Direct
Connect network.

Signaling overhead Since a downloading client needs to contact a fixed num-
ber of Oracle servers for every addition to the list of source peers, there is
some extra signaling overhead. But only few Oracle servers — ideally only
one — are needed to provide a complete ranking, so the signaling over-
head is not expected to be very significant. There is no extra signaling
necessary at all between peers within the Direct Connect network.

Security While other peers in the Direct Connect network should not be able
to influence the Oracle-provided ranking, the assumption is made that the
Oracle itself is trusted and secure.

Performance The accuracy of the ranking is solely dependent on the imple-
mentation of the Oracle. Since the Oracle is — ideally — operated by the
network operators, it is assumed to be very accurate.

4.2.2 Synthetic coordinate systems

Synthetic coordinate systems, described in section 2.1.2, assign a (virtual) coor-
dinate to each peer in the network, where network distances between peers can
be obtained by calculating the distance between these coordinates.

Integration As synthetic coordinate systems are created and maintained among
peers, every client in the Direct Connect network that may upload or
download files needs to be modified implement coordinate management.

Dynamicity Synthetic coordinate systems have no issues with dynamic peer
lists at all. A downloading client can request the coordinate of each source
peer when it is needed and then rank the peers accordingly. Synthetic
coordinate systems do, however, have trouble obtaining accuracy for peers
that have only just joined the network.

Scalability In order to maintain its coordinate, a peer only needs to exchange
coordinates and measure RTTs with a fixed number of other clients. In
order to rank peers, a downloading client needs to obtain the coordinates
only for the list of source peers.

Signaling overhead Exchanging coordinates between peers adds some sig-
nalling overhead, but this is expected to not be very significant due to
the small size of the information needing to be exchanged (a coordinate)
and the limited number of peers with which this exchange is necessary.

28

Security Synthetic coordinate systems are vulnerable to incorrect or malicious
peers.

Performance The accuracy of a synthetic coordinate system on large-scale
deployment may suffer due to problems with triangle inequality violation,
churn, drift, malicious behaviour and latency variance. Finding good so-
lution to these problems in an on-going research topic.

4.2.3 CDN-based proximity

CDN-based proximity, covered in section 2.1.3, uses the results of DNS queries
from large-scale internet CDNs to determine whether two peers are close to each
other.

Integration CDN-based proximity requires that each uploading peer maintains
a ratio map and offers this map to downloading clients. This means that
all uploading clients need to be modified for a downloading client to be
able to rank its list of source peers.

Dynamicity When a downloading client discovers a new source peer, it only
has to obtain its ratio map in order to update the ranking of source peers.

Scalability A downloading client has to obtain the ratio maps only for the
list of source peers, and no other communication between the peers is
necessary. Each peer also needs to regularly resolve a fixed number of
DNS names, but this should not hinder scalability of the Direct Connect
network and it is assumed that the DNS system is already capable of
handling the additional load.

Signaling overhead A downloading client needs to request the ratio maps
for all possible source peers. These maps are expected to be relatively
small. The overhead of continuously querying a number of DNS servers is
approximately 18 kB upstream and 36 kB downstream per day.

Security A malicious source peer can trivially provide an orthogonal ratio map
that guarantees that it will be given a low ranking. If the source peer can
also obtain the ratio map of the downloading peer — which is likely in a
P2P scenario — then it can also provide a ratio map that guarantees a
high ranking. This only affects the ranking of the malicious peer itself, it
is not possible for a malicious peer to influence the ranking of other peers
in the network.

Performance The solution only works in finding peers close to the download-
ing peer. If the distance between the downloading peer and all source
peers is larger than the granularity of the CDN routing, then CDN-based
proximity will not offer any information.

4.3 Performance Estimation

The performance estimation techniques provide both a solution for ranking
source peers on some performance-based metric and include an algorithm for
downloading the actual files. As such, each of the criteria listed in section 4.1
has to be evaluated for each mechanism, no general remarks can be made.

29

4.3.1 Local RTT measurements

The peer selection mechanism described in section 2.2.1 uses locally obtained
RTT measurements to rank the list of source peers, and then assigns block sizes
proportional to the measured RTTs for a number of top ranking peers.

Integration A downloading client needs to be able to obtain RTT measure-
ments from its source peers, but this can be done without requiring changes
to the Direct Connect protocol.

Structure awareness While the solutions was discussed in the context of FTP
mirrors, it can be applied to the Direct Connect network as well.

Parallel downloading The solution includes an algorithm for non-interruptible
parallel downloading.

Dynamicity While it is easy for the downloading client to obtain RTT mea-
surements of newly found source peers, the used PD scheme does not take
dynamicity of the peer list into account, and will require some modifica-
tions in order to handle this.

Scalability The downloading client only needs to contact each source peer
once in order to obtain the RTT measurements, and can then proceed to
download from a fixed number of peers. This solution does not add any
scalability issues.

Signaling overhead The overhead from obtaining the RTT measurements
should be relatively small, and these measurements are only obtained once.
The parallel downloading algorithm assigns large file chunks to each source
peer and attempts to minimize the number chunk requests.

Security The only information influencing the peer selection are the results of
the RTT measurements. It is possible for a source peer to intentionally
add a delay to get a low ranking, but the opposite is not possible.

Performance The solution was described and analyzed in the context of FTP
mirrors, the accuracy of using RTT measurements to estimate bandwidth
has not been studied in the context of P2P systems or with Direct Connect
in particular.

4.3.2 Machine learning

The machine learning approach described in section 2.2.2 uses passively ob-
tained information about peers to calculate a rough estimate of their expected
performance. Using these estimations, the downloading peer will perform a se-
quence of partial downloads with different source peers to eventually settle on
the peer with the best performance.

Integration Any downloading peer that implements this machine learning
technique can immediately benefit from it, no other peers need to be
modified. However, the efficiency of the peer selection may be improved
when other peers are modified to provide more information. Hubs are
also required to broadcast as much information as possible in the user list,
some hubs don’t do this.

30

Structure awareness The solution was designed for the Gnutella network,
but the assumptions on the network structure hold for DC as well.

Parallel downloading The solution does not support a PD scheme.

Dynamicity Obtaining a performance estimate for newly found source peers
can be done easily, but the downloading scheme provides no methods to
handle dynamicity in the list of source peers.

Scalability The performance estimates for source peers are calculated from
passively obtained information, and does thus not require any more mes-
saging than already exists within the DC network. The downloading
scheme connects to only a single source peer at a time and thus does
not pose any scalability issues.

Signaling overhead The solution does not add any more signaling overhead
than what is already present in the current DC network.

Security It is possible for a malicious peer to cheat its own rank in the perfor-
mance estimation algorithm by broadcasting incorrect information about
itself.

Performance The accuracy of the machine learning technique is dependent
on the usefulness and interpretation of the passively collected informa-
tion. This can vary depending on the network configuration of the client
and which fields are distributed or filtered by the hub. The downloading
algorithm attempts to find a single source peer to continue downloading
from, but there is no guarantee that the chosen source peer will continue
to provide the same bandwidth. It may happen that the download process
gets stuck indefinitely if the performance of this peer degrades badly over
time.

4.3.3 Random periodic switching

Random periodic switching has been described in section 2.2.3. The algorithm
chooses a random peer from the list of source peers and starts downloading from
it for a fixed amount of time. After a timeout, the algorithm starts from the
beginning again and chooses a new random peer to download from.

Integration Random periodic switching does not rely on any specific protocol
features, and can thus be applied directly on a downloading client without
requiring other peers to be modified.

Structure awareness No assumptions are made on the structure of the P2P
network.

Parallel downloading This solution makes use of the SD scheme, and it does
not support PD.

Dynamicity The algorithm does not keep state between each downloading
period and does not require extra knowledge about source peers, so it can
adapt easily to a changing list of source peer.

Scalability No extra messaging is necessary and no extra state is kept.

31

Signaling overhead No extra messaging is necessary. Since the downloading
algorithm only changes its single active source peer once in each time
period, the number of download requests should not be very significant.

Security Since the peer selection process is random, other peers do not have a
way to influence it.

Performance The solution removes the effects of network heterogeneity and
temporal fluctuations in network capacity, and therefore ensures that the
download will not get stuck on a slow source peer. However, the solution
does not favour faster source peers over slower ones, and is therefore not
optimal in reducing the downloading time.

4.3.4 Biased random periodic switching

Section 2.2.4 describes an improvement on random periodic switching that as-
signs a different connection probability to each possible source peer. The solu-
tion includes a PD scheme and the probabilities are normalized in such a way
that their total sum is equivalent to the desired DoP.

Integration In order to obtain good probability assignments, the solution
needs to be able to obtain the number of active uploads on each source
peer. This information is already available in the DC protocol through
various means such as the user list or the search results.

Structure awareness No new network assumptions are added compared to
the random periodic switching technique.

Parallel downloading The solution supports a PD scheme, but no algorithm
is given for assigning file chunks to source peers.

Dynamicity The downloading algorithm can accept and use new source peers
as they are found, but no analysis has been made on how this affects the
downloading performance.

Scalability No extra messaging is necessary that is not already part of the
normal DC network.

Signaling overhead No extra messaging is necessary, and the downloading
algorithm only connects to a limited number of source peers in each time
period.

Security It is possible for a malicious peer to cheat its own connection proba-
bility in by providing incorrect information about its load, but the effects
of such actions are limited by the randomness inherent in the solution.

Performance The periodicity and randomness of the algorithm prevents the
download process from getting stuck on a single slow source peer, yet the
algorithm favours faster source peers over slower ones in order to decrease
the total download time.

32

4.3.5 Chunk-based probing

In chunk-based probing, described in 2.2.5, the file to be downloaded is divided
into equally-sized chunks. These chunks are assigned to source peers in sequence
in order to find a single high-capacity peer to download the remaining chunks
from.

Integration No additional information on other peers is necessary, a download-
ing client can benefit from chunk-based probing without modifications to
existing peers.

Structure awareness No assumptions are made on the structure of the P2P
network.

Parallel downloading This solution makes use of the SD scheme, and it does
not support the PD scheme.

Dynamicity The downloading algorithm assumes that peer lists are static.
Extending this algorithm to give newly found source peers a try is possible,
but has not been discussed or analyzed.

Scalability No extra messaging is necessary and only a single peer is used for
downloading at any time.

Signaling overhead The number of chunk download requests depends on the
chosen chunk size. The overhead of download requests will be insignificant
with larger chunks.

Security The peer selection algorithm is dependent solely on information gath-
ered by the downloading client and can not be influenced by other peers. A
source peer can, however, influence its own ranking by providing different
performance in the initial stage.

Performance The probing phase using fixed-size chunks may cause the down-
load process to stall indefinitely if the chunk size is too large and there
is a very slow source peer, or may decrease the accuracy of the measure-
ments if the chunk size is too small. There is also no guarantee that the
performance of the chosen source peer will not degrade badly over time.

4.4 Parallel Downloading Techniques

Parallel downloading techniques only provide a downloading algorithm, and do
not make any selection among the list of source peers. As such, the following
criteria can be evaluated on parallel downloading techniques in general:

Structure awareness Pure downloading techniques do not assume any struc-
ture in the P2P network beyond the basic concept of a downloading peer
and a set of source peers.

Parallel downloading All techniques discussed in this section make use of the
PD scheme.

33

Security Pure downloading techniques do not use any information outside of
local performance measurements. It is therefore not possible for other
peers to influence the downloading process by means other than changing
their own provided performance.

4.4.1 Dynamic Parallel Access

Dynamic Parallel Access has been described in 2.3.1. The solution involves
splitting the file to be downloaded into many equally sized chunks, and then
assigning each chunk to a source peer. As soon as a chunk has been downloaded
from one peer and there are still chunks to be downloaded, a new chunk is
requested from the same peer again.

Integration The basic downloading algorithm can be implemented without
requiring modifications in any other peers. However, as discussed in sec-
tion 3.4, the pipelining technique to avoid the RTT delays between chunk
requests can not be implemented without modifying all source peers to
allow this.

Dynamicity The small chunk size allows for quick response to dynamic changes
in the list of source peers. Remaining file chunks can be downloaded from
a new source peer as soon as one is found.

Scalability The algorithm assumes that all available source peers are used
to aid the download process simultaneously. When more downloading
clients implement this scheme, the overall performance of the network will
degrade significantly.

Signaling overhead Due to the small chunk size, there will be significant sig-
nalling overhead with the many chunk requests.

Performance The downloading time will increase significantly if the pipelin-
ing technique is not employed. Even if pipelining is used, the signaling
overhead may be significant enough to negatively affect the downloading
time.

4.4.2 Adaptive Dynamic Parallel Downloading

Section 2.3.2 discusses Adaptive Dynamic Parallel Downloading (adPD), a tech-
nique where the file to be downloaded file is split into as many equally-sized
chunks as there are source peers. Each chunk is then downloaded from each
source peer, and once one chunk has been downloaded the remaining chunks
are divided proportionally to the measured bandwidth of each source peer.

Integration The solution assumes that active file downloads can be interrupted
at any time and that a new chunk can be requested immediately. In DC,
the only existing way to interrupt a download is to disconnect the source
peer and re-open a new connection for the next chunk request. There is a
much higher cost associated with this action than is assumed with adPD. A
more efficient approach to interrupting downloads requires a modification
the protocol and an update to all source peers.

34

Dynamicity The file is divided into as many chunks as there are source peers,
so in order for the algorithm to handle newly found peers, the file has to be
re-divided and chunks need to be re-assigned. The effect of this operation
on the downloading performance has not been analyzed.

Scalability The solution assumes that a separate peer selection mechanism is
used to select a limited number of source peers to use in the download-
ing process. With that assumption, adPD itself does not degrade the
scalability of the network.

Signaling overhead The solution optimizes for minimizing the number of
chunk requests, and thus adds very little signalling overhead.

Performance The cost of interrupting and immediately starting a new chunk
request from the same source peer is not considered in the algorithm, but
the algorithm provides good performance under the assumption that that
cost can be minimized with protocol modifications.

4.4.3 Minimum-Signaling Maximum-Throughput

MSMT, discussed in 2.3.3, uses a Bayesian estimate as a indication of a source
peers’ bandwidth. The file to be downloaded is divided into chunks proportional
to the estimated bandwidth. When a chunk has been downloaded, all existing
transfers are interrupted, the Bayesian estimates are updated, and then each
source peer is assigned new chunks.

Integration As with adPD (section 4.4.2), MSMT assumes that file transfers
can be interrupted and resumed with a low cost.

Dynamicity The algorithm first downloads a small chunk from each source
peer in order to get a starting estimate. If a new source peer is found
while the download is already in progress, the new peer can’t easily be
used without starting the algorithm from the beginning. The effect of this
operation on the downloading performance has not been analyzed.

Scalability Similar to adPD.

Signaling overhead The solution optimizes for minimizing the number of
chunk requests, and thus adds very little signalling overhead. However,
MSMT does not offer an algorithm for allocating chunks within the file,
and may therefore require non-contiguous chunks to be assigned to source
peers. This will increase the required signalling overhead.

Performance Similar to adPD, with the added note that the signalling over-
head caused by assigning non-contiguous chunks to source peers has not
been analyzed, but may cause the performance to degrade.

4.5 Incentive-Based Peer Selection

Incentive-based peer selection techniques have been chiefly introduced in sec-
tion 2.4, followed by a short explanation of the BitTorrent protocol in sec-
tion 2.4.1 as an example of such a technique.

35

Incentive-based techniques use peer selection to solve the problem of peers
that try to benefit from the network without contributing back (free-riders). In
the case of a file sharing network such as Direct Connect, this means that peers
are expected to upload files to other peers if they wish to download something
themselves. A peer selection technique can take this into account and either
mandate or strongly encourage that only peers that upload files to the network
will be able to use the network for downloading.

In the Direct Connect network, as described in section 3.1, the centralized
Hub node is responsible for deciding and enforcing the policies on free-riding.
Peer selection in the Direct Connect network, however, is not a centralized func-
tion. Each downloading client performs its peer selection independently of other
peers. As such, when a client implements its own incentive-based peer selection
technique, it may work against the policies set by the Hub administrator. Pro-
viding better mechanisms to grant the Hub more power in enforcing file sharing
policies is outside of the scope of this research, and incentive-based techniques
are therefore not considered in this comparison.

4.6 Comparison

A comparison of all previously discussed peer selection mechanisms is listed in
table 4.1. Each solution is assigned a score from −− (bad) to ++ (good) for
each of the criteria.

In
te

g
ra

ti
o
n

S
tr

u
ct

u
re

P
D

D
y
n

a
m

ic

S
ca

la
b

le

O
v
er

h
ea

d

S
ec

u
ri

ty

P
er

fo
rm

a
n

ce
Topology Estimation

Oracle-based ++ − N/A ++ ++ + ++ ++
Synthetic coordinates −− − N/A + + + − +/−
CDN-based proximity −− − N/A ++ ++ + + −

Performance Estimation
Local RTT measurements ++ ++ ++ − ++ + + +
Machine learning + ++ −− − ++ + +/− −
Random periodic switching ++ ++ −− ++ ++ + ++ +/−
Biased RPS + ++ + + ++ + + ++
Chunk-based probing ++ ++ −− − ++ + + −

Parallel Downloading
Dynamic Parallel Access + ++ ++ ++ −− −− ++ +/−
adPD +/− ++ ++ − ++ + ++ +
MSMT +/− ++ + − ++ +/− ++ −

Table 4.1: Side-by-side comparison of the various peer selection techniques.

When choosing a solution for use with Direct Connect, it is important to keep
in mind that a complete solution includes both a peer selection mechanism and
a downloading algorithm. The topology estimation techniques only provide peer
selection and the parallel downloading techniques only provide a downloading
algorithm. These solutions are considered incomplete, and require a second
solution from another category to complement it. The performance estimation
techniques all include both peer selection and a downloading algorithm, so a
single choice in that category will suffice.

36

It should also be noted that the criteria for incomplete solutions only eval-
uate what the solutions do provide. For example, the performance criteria
for topology estimation techniques only evaluates their accuracy, and does not
involve the notion of file download time. A highly accurate peer selection tech-
nique can not fully compensate for a badly performing downloading algorithm,
so both solutions must perform well for the combination to provide good perfor-
mance. Similarly, many of the criteria are cumulative in an unfavourable way.
For example, if the peer selection technique requires extra signalling overhead,
then this overhead will be present regardless of the choice of the downloading
algorithm. Using multiple techniques to provide a complete solution is therefore
only favourable when both solutions score well on all criteria.

Out of the discussed solutions, only Biased Random Periodic Switching has a
+ or better score on all criteria. It includes both peer selection and a download-
ing algorithm, and will therefore be the most suitable choice for the continuation
of this research.

37

Chapter 5

Challenges

The peer selection mechanism most suitable for Direct Connect is, in chapter 3.5,
chosen to be Biased Random Periodic Switching. Some challenges, however, still
remain when applying this solution to Direct Connect.

5.1 File chunk allocation

As mentioned in chapter 2.2.4, the Biased Random Periodic Switching algorithm
only determines which source peers should be downloaded from at which point
in time. It does not provide a mechanism to allocate byte ranges within the
file and it does not assign such chunks to source peers. To make matters more
complicated, the algorithm is time-based rather than chunk-based, so it is not
known in advance how many file data a peer ends up downloading from each
source peer.

For Biased Random Periodic Switching to be applicable in prac-
tice, a file chunk allocation algorithm needs to be designed and an-
alyzed. The primary goal of such an algorithm is to assign contiguous and
non-overlapping chunks to each active source peer such that the number of file
download requests is minimized, but there may be other considerations, too.

One such consideration is related to the verification of downloaded data.
The TTH hashes used in Direct Connect allow the downloading peer to verify
the correctness of individual fixed-size blocks within the file. If a downloaded
block has failed the verification, then it would be beneficial to the downloading
peer if the source peer that provided the incorrect data could be identified. In
order to do this, the downloading peer may want to avoid assigning parts of the
same fixed-size block to more than one source peer.

5.2 Source peer availability

Biased Random Periodic Switching works on the assumption that all source
peers can be downloaded from at any time. This assumption does not hold in
practice for Direct Connect. There are various reasons why a source peer can
not be downloaded from at a certain point.

1. The source peer has left the network, either temporarily or permanently,

38

2. There are connectivity issues between the downloading peer and the source
peer,

3. All upload slots of the source peer are taken.

The first reason is the only one that the downloading peer can reliably know
in advance, since the list of all online peers is synchronised with the user list,
described in chapter 3.1. The number of upload slots in use at each source
peer may also be available in the same user list, but many hubs remove this
information in order to save resources. Even if it is available, the slot count
may be outdated by the time that a connection has been made with a source
peer, and is therefore not a reliable indication of whether downloading from a
source peer is possible. Combined with the possibility of connectivity issues,
that means that the only reliable way for a downloading peer to know whether
a source peer can be downloaded from is to actively try to create a connection
and request a download.

The temporal unavailability of source peers causes the obtained average DoP
to be lower than desirable in the Biased Random Periodic Switching algorithm,
and may severely degrade the downloading performance as a result.

A special case of the above problem happens when the source peer imple-
ments a FIFO queue for slot assignment, as described in chapter 3.4. If the
source peer has an upload slot reserved for the downloading peer, then the
downloading peer should try to make use of that. Not doing so may end up in a
situation where the source peer has all its upload slots allocated for downloading
peers that aren’t requesting a download within the allocated time frame, thus
leaving valuable upload bandwidth unused.

A related problem is that a source peer may become unavailable while down-
loading from it.

Further research is needed to analyze the effects of source peer
(in)availability and FIFO queue interaction on the downloading time,
and to propose possible improvements to the Random Biased Periodic
Switching algortihm to better handle realistic networks.

5.3 Source peer discovery

The problem is source peer discovery is as follows. Given a list of files to
download, a peer needs to obtain a list of possible source peers to download from.
Thorough this report, the assumption has been made that each downloading
peer has already solved this problem. After all, one can only focus on the
problem of peer selection after having obtained a list of possible source peers.

The mechanisms available in the Direct Connect protocols for source peer
discovery have been described in chapter 3.3. But what has not been discussed
is how these mechanisms should be used. Finding a suitable algorithm involves
a number of trade-offs.

Accuracy The primary goal of a source discovery algorithm is to find as many
source peers as possible. Preferably, it is able to find all source peers
available in the network.

Performance A file download can not start before some source peers have
been found, so if peer discovery takes a long time to complete, then this

39

will severely affect total time taken to download a file. For small files or
high-bandwidth networks, finding source peers can easily take more time
than what is required to actually download the file.

Overhead and scalability The signalling overhead required to find source
peers should not become significant when compared to the actual file
download. Similarly, finding source peers should not severely degrade
the overall performance and scalability of the network.

Searching for source peers may involve the flooding search mechanism pro-
vided by the Direct Connect protocols. This mechanism can provide quick and
accurate results, but using it often may severely degrade the overall performance
and scalability of the network. Alternatively, a downloading peer can obtain the
file lists of other peers to see if they have some of the requested files, but the
accumulated size of all file lists can easily exceed the total size of the files to be
downloaded, wasting precious time and bandwidth.

Future research is necessary to determine whether the available
mechanisms are sufficient, to analyze the trade-offs and to improve
the algorithms currently used by Direct Connect clients.

5.4 Free-riding

This research focussed on using peer selection in Direct Connect to improve
the downloading performance as seen by each downloading peer. The problem
of free-riding has only been briefly discussed in chapters 2.4 and 3.1. Further
research on this topic is out of the scope of this report and it was assumed
that Direct Connect hubs already have suitable policies in place to prevent or
strongly discourage free-riding.

In practice, the existing mechanisms that are available to the hub to prevent
free-riding may be too limited. Future research is necessary to analyze
whether the existing mechanisms are sufficient, and to find possible
improvements to combat free-riding.

40

Chapter 6

Conclusions and Future
work

This chapter finalizes this report with a short summary concluding the research,
followed with a list of topics that may benefit from more future research.

6.1 Conclusion

This report has focussed on the problem of file downloading and peer selection
in the context of the Direct Connect P2P filesharing network. We have found
answers to the following research questions.

1. Which peer selection mechanisms exist?

A variety of general peer selection mechanisms exist employing techniques
to estimate network distances, estimate individual performance for each
source peer, perform parallel downloading, or try to combat free-riding.

Topology estimation techniques attempt to estimate the network distances
between peers. Obtaining these estimates can be done either using a
centralised Oracle server, in a more P2P fashion using synthetic coordinate
systems, or by exploiting widely deployed CDN redirection mechanisms.

Performance estimation techniques rank peers by obtaining an estimate
of their performance. Existing solutions employ local RTT measurements,
machine learning, (biased) random periodic switching or chunk-based prob-
ing.

A few parallel downloading algorithms that do not provide peer selection
has been described as well. These include Dynamic Parallel Access, Adap-
tive Dynamic Parallel Downloading and Minimum-Signaling Maximum-
Throughput.

Various incentive-based peer selection mechanisms exist to combat free-
riding. These are out of the scope of this research and have not been
discussed in detail.

41

2. What is Direct Connect?

Direct Connect is a hybrid P2P filesharing network, consisting of three
entities: Clients, Hubs and Hublists. A Hub is a TCP server that provides
user authentication, user list synchronisation and general routing facilities
for Clients. Each client may share its local files with other clients in the
network.

In order to perform file transfers, two clients can initiate a direct TCP
connection between each other with the help of the hub. Using this TCP
connection, a client can also request the complete file list shared by the
other client. Clients can search for content and for alternative source peers
by means of a flooding search coordinated by the hub.

Uploading peers (clients that offer their files to the network) limit the
number of simultaneous upload transfers using a slots mechanism. Ex-
isting Direct Connect clients implement a variety of peer selection and
downloading strategies. Peer selection is commonly based on the time it
took to connect to the peer. Most client implement a parallel downloading
scheme.

3. Which peer selection mechanisms are suitable for Direct Con-
nect?

Important characteristics of peer selection mechanisms include how well it
integrates with the existing Direct Connect network, whether it includes
parallel downloading, how well it deals with dynamicity of the network,
scalability and security, and how well it performs. Out of the discussed
mechanisms, Biased Random Periodic Switching has been found to be the
most suitable to Direct Connect.

The final question was what challenges exist for peer selection in
Direct Connect? The answer is discussed in the next section.

6.2 Future work

The following list is a short summary of the challenges discussed in chapter 5.

• A file chunk allocation algorithm needs to be designed and analyzed.

• The effects of source peer (in)availability on the downloading time needs
to be analyzed and further improvements to the Biased Random Periodic
Switching algorithm need to be proposed.

• The source peer discovery mechanisms and algorithms in Direct Connect
need to be analyzed and evaluated.

• Further research may be necessary to provide better mechanisms to allow
Direct Connect hubs to combat free-riding.

42

Bibliography

[1] Akamai. http://www.akamai.com/.

[2] Application-Layer Traffic Optimization (alto) Working Group. https://

datatracker.ietf.org/wg/alto/.

[3] DC++ client. http://dcplusplus.sourceforge.net/.

[4] EiskaltDC++. https://code.google.com/p/eiskaltdc/.

[5] JaCy - The Peer to Peer Search Engine. http://yacy.de/.

[6] Jucy Direct Connect Client. http://jucy.eu/.

[7] Limelight Networks. http://www.limelight.com/.

[8] Ncurses Direct Connect. http://dev.yorhel.nl/ncdc.

[9] Spotify Music Streaming Service. http://www.spotify.com/.

[10] StrongDC++. http://dcplusplus.sourceforge.net/.

[11] The Freenet Project. https://freenetproject.org/.

[12] Micah Adler, Rakesh Kumar, Keith Ross, Dan Rubenstein, Torsten Suel,
and David D. Yao. Optimal Peer Selection for P2P Downloading and
Streaming. In IEEE INFOCOM, 2005.

[13] Vinay Aggarwal, Anja Feldmann, Christian Scheideler, and Michalis
Faloutsos. Can ISPs and P2P users cooperate for improved performance.
ACM SIGCOMM Computer Communication Review, 37(3):29–40, 2007.

[14] Andreas J. Alberts and Albert S.J. Helberg. Practical Implementation of
a Virtual Currency Based Incentive Mechanism in a Direct Connect Peer-
to-Peer System. In SATNAC, 2010.

[15] Salman A. Baset and Henning Schulzrinne. An Analysis of the Skype
Peer-to-Peer Internet Telephony Protocol. Computing Research Repository,
abs/cs/041, 2004.

[16] Daniel S. Bernstein, Zhengzhu Feng, Brian Neil Levine, and Shlomo Zil-
berstein. Adaptive Peer Selection. In The Second International Workshop
on Peer-to-Peer Systems, pages 237–246, 2003.

43

http://www.akamai.com/
https://datatracker.ietf.org/wg/alto/
https://datatracker.ietf.org/wg/alto/
http://dcplusplus.sourceforge.net/
https://code.google.com/p/eiskaltdc/
http://yacy.de/
http://jucy.eu/
http://www.limelight.com/
http://dev.yorhel.nl/ncdc
http://www.spotify.com/
http://dcplusplus.sourceforge.net/
https://freenetproject.org/

[17] Yuh-Ming Chiu. On the Performance of Peer Selection Strategies in
Stochastic Peer-To-Peer Networks. Proquest, Umi Dissertation Publish-
ing, 2011.

[18] Yuh-Ming Chiu and Do Young Eun. Minimizing file download time in
stochastic peer-to-peer networks. IEEE/ACM Transactions on Networking,
16:253–266, 2008.

[19] Yuh-Ming Chiu and Do Young Eun. On the performance of content delivery
under competition in a stochastic unstructured peer-to-peer network. IEEE
Transactions on Parallel and Distributed Systems, 21:1487–1500, 2010.

[20] David R. Choffnes and Fabián E. Bustamante. Taming the torrent: a prac-
tical approach to reducing cross-isp traffic in peer-to-peer systems. SIG-
COMM Computer Communication Review, 38(4):363–374, 2008.

[21] Brent N. Chun, David E. Culler, Timothy Roscoe, Andy C. Bavier, Larry L.
Peterson, Mike Wawrzoniak, and Mic Bowman. PlanetLab: An Overlay
Testbed for Broad-Coverage Services. Computer Communication Review,
33:3–12, 2003.

[22] Bram Cohen. The BitTorrent Protocol Specification, 2009. http://

bittorrent.org/beps/bep_0003.html.

[23] Frank Dabek, Russ Cox, M. Frans Kaashoek, and Robert Morris. Vivaldi: a
decentralized network coordinate system. In ACM SIGCOMM Conference,
pages 15–26, 2004.

[24] T. S. Eugene and Hui Zhang. Predicting internet network distance with
coordinates-based approaches. In IEEE INFOCOM, pages 170–179, 2001.

[25] Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-Peer Communication
Across Network Address Translators. In USENIX Technical Conference,
pages 179–192, 2005.

[26] Jianming Fu and Hui Fan. Assigning Block Size Based on Speculation for
Parallel Downloading. In Sixth International Conference on Computer and
Information Technology, page 119, 2006.

[27] Mohamed Ali Kaafar, Franc ois Cantin, Bamba Gueye, and Guy Leduc.
Detecting Triangle Inequality Violations for Internet Coordinate Systems.
In Future Networks, June 2009.

[28] Jonathan Ledlie, Paul Gardner, and Margo I. Seltzer. Network Coordinates
in the Wild. In Networked Systems Design and Implementation, 2007.

[29] Keqin Li. Analysis of random time-based switching for file sharing in peer-
to-peer networks. In Symposium on Parallel and Distributed Processing,
pages 1–8, 2010.

[30] Keqin Li. Reducing Download Times in Peer-to-Peer File Sharing Sys-
tems with Stochastic Service Capacities. In Symposium on Parallel and
Distributed Processing, pages 608–617, 2011.

44

http://bittorrent.org/beps/bep_0003.html
http://bittorrent.org/beps/bep_0003.html

[31] J. Liang, R. Kumar, and K.W. Ross. Understanding KaZaA. Submetido
para publicaçao, 2004.

[32] Richard T. B. Ma, Sam C. M. Lee, John C. S. Lui, and David K. Y.
Yau. Incentive and Service Differentiation in P2P Networks: A Game
Theoretic Approach. IEEE/ACM Transactions on Networking, 14(5):978–
991, October 2006.

[33] Petar Maymounkov. Kademlia: A peer-to-peer information system based
on the XOR metric. 2001.

[34] Karl Molin. Measurement and Analysis of the Direct Connect Peer-to-Peer
File Sharing Network. Master’s thesis, University of Gothenburg, June
2009.

[35] Michael Piatek, Harsha V. Madhyastha, John P. John, Arvind Krishna-
murthy, and Thomas Anderson. Pitfalls for ISP-friendly P2P design. In
The Eighth ACM Workshop on Hot Topics in Networks (HotNets-VIII),
2009.

[36] Y Yang R. Alimi, R. Penno. ALTO Protocol Internet-Draft v13. Technical
report, IETF, September 2012.

[37] Matei Ripeanu. Peer-to-Peer Architecture Case Study: Gnutella Network.
In First International Conference on Peer-to-Peer Computing, pages 99–
100, aug 2001.

[38] Pablo Rodriguez and Ernst W. Biersack. Dynamic parallel access to repli-
cated content in the internet. IEEE/ACM Transactions on Networking,
10:455–465, 2002.

[39] Anna Satsiou and Leandros Tassiulas. Reputation-Based Resource Alloca-
tion in P2P Systems of Rational Users. In IEEE Transactions on Parallel
and Distributed Systems, volume 21, pages 466–479, April 2010.

[40] Mischa Schmidt, Jan Seedorf, Stefano Napolitano, RosarioG. Garroppo,
Andrea Cavaliere, Thilo Ewald, Armin Jahanpanah, Zbigniew Koper-
towski, Marcin Pilarski, and Pawel Grochocki. Experiences with large-
scale operational trials of ALTO-enhanced P2P filesharing in an intra-ISP
scenario. Peer-to-Peer Networking and Applications, pages 1–21, 2012.

[41] Jacek Sieka. ADC Protocol version 1.0.1, 2008. http://adc.sourceforge.
net/ADC.html.

[42] David A. Turner and Keith W. Ross. A Lightweight Currency Paradigm
for the P2P Resource Market. 2003.

[43] Fredrik Ullner. ADC Extensions version 1.0.6, 2010. http://adc.

sourceforge.net/ADC-EXT.html.

[44] Vivek Vishnumurthy, Sangeeth Chandrakumar, and Emin Gn Sirer.
KARMA: A Secure Economic Framework for Peer-to-Peer Resource Shar-
ing. In Workshop Economics of Peer-to-Peer Systems, 2003.

45

http://adc.sourceforge.net/ADC.html
http://adc.sourceforge.net/ADC.html
http://adc.sourceforge.net/ADC-EXT.html
http://adc.sourceforge.net/ADC-EXT.html

[45] Rita Hanna Wouhaybi. Algorithms for reliable peer-to-peer networks. PhD
thesis, Columbia University, 2006.

[46] Yonghe Yan, Adel El-atawy, and Ehab Al-shaer. Ranking-Based Optimal
Resource Allocation in Peer-to-Peer Networks. In IEEE INFOCOM, pages
1100–1108, 2007.

[47] Amgad Zeitoun, Hani Jamjoom, and Mohamed El-Gendy. Scalable parallel-
access for mirrored servers. In The 20th IASTED International Conference
on Applied Informatics, pages 93–98, 2002.

[48] Xu Zhou, Xianliang Lu, Mengshu Hou, and Chuan Zhan. A speed-based
adaptive dynamic parallel downloading technique. Operating Systems Re-
view, 39(1):63–69, 2005.

46

	Introduction
	Problem Statement and Research Questions
	Organisation of this Report

	Peer Selection Mechanisms
	Topology Estimation
	Performance Estimation
	Parallel Downloading Techniques
	Incentive-Based Peer Selection

	Overview of Direct Connect
	High-level overview
	Connection initiation
	Content and peer discovery
	Uploading peers
	Peer Selection Strategies

	Peer Selection in Direct Connect
	Criteria
	Topology Estimation
	Performance Estimation
	Parallel Downloading Techniques
	Incentive-Based Peer Selection
	Comparison

	Challenges
	File chunk allocation
	Source peer availability
	Source peer discovery
	Free-riding

	Conclusions and Future work
	Conclusion
	Future work

	Bibliography

