
DC++ and DDOS Attacks

Ion BICA
Computer Science Department, Military Technical Academy

Bucharest, Romania

and

Adrian FURTUNǍ
Computer Science Department, Military Technical Academy

Bucharest, Romania

ABSTRACT

The usage of peer-to-peer networks in massive distributed
denial of service attacks is well known since the beginning of
year 2007 when this kind of attack has often been observed
against many public servers. This article discusses in great
depth the anatomy of a DDoS attack generated using the DC++
network and shows some measures that could be used to defend
against it, including a tool to detect the attacker hubs. The ideas
presented in this article are based on practical experience during
a confrontation with this type of attack which is still used with
maximum of effectiveness against public servers.

Keywords: DDoS, peer-to-peer, denial of service, attack,
DC++, Direct Connect

1. INTRODUCTION

Distributed Denial of Service (DDoS) attacks are known for
many years and they can be very effective even in nowadays.
The main idea of a DDoS attack is to deplete the resources of
the victim (bandwidth, CPU, memory, disk space, etc) and no
matter how many resources the victim reallocates, the attack
will still overwhelm it.

There are several methods to implement a DDoS attack
nowadays. One of them is by commanding the bots (zombies)
of a botnet to simultaneously send attack traffic against a
victim. The attack intensity depends on the size of the botnet
[1]. Several botnets are now disputing for supremacy around the
world: Storm, Kraken, Srizibi, etc. [2]

A more stealthy method of doing a DDoS attack is to inject
hidden code into well known sites that are vulnerable. The
hidden code could contain instructions to initiate connections to
the victim server. When the visitors visit those sites, they
automatically execute the code and initiate legitimate
connections to the victim server. [3]

Peer-to-peer networks can also be used in DDoS attacks. One of
the most aggressive of these attacks exploits the DC++ network
[4] [5]. This is different from a botnet attack because the

attacker does not exploit any vulnerability in the clients that
generate the attack traffic. He just instructs them to blindly
connect to the victim through the DC++ hub. In the next parts
of this article we will discuss in depth this DC++ based DDoS
attack.

2. DC++ OVERVIEW

2.1 DC++ history and architecture

In 1999 a high-school boy named Jonathan Hess was creating a
company named NeoModus, which had the objective to
facilitate the file sharing over the Internet. He was using for this
purpose a proprietary protocol called Direct Connect. The first
client application for this network was NMDC (NeoModus
Direct Connect). The idea of sharing files over the Internet
became very popular, so other Direct Connect (freeware) clients
were written - DC++, StrongDC, oDC, Valknut, etc - by reverse
engineering the protocol. The most popular of them is DC++,
which gave the name of the network.

DC++ peer-to-peer network is composed of three entities:
clients, hubs and hublist servers. The clients are the ones who
want to share files between each other. The hubs are server
applications (ex. Verlihub, YnHub, HexHub, Ptokax, etc) that
facilitate the communication between the clients. For a client to
know which hubs to connect to, it must know the hub’s name or
IP address and the hub’s port. These information can be set
manually or the client can download a list with hub information
from specialized hublist servers. The architecture of a DC++
network is presented in Figure 1.

Figure 1. DC++ network architecture

DC++ clients identify themselves to the hub and to the other
clients by a so called nickname. Some hubs impose restrictions
for the nickname to have a specific format (ex.
[RO][B][CZONE]xxx) but others allow random nicknames.

Clients can connect to the DC++ hubs in two ways: passive or
active. A passive client is the one that connects to the hub from
behind a firewall or from a LAN with private IP addresses. A
passive client cannot receive direct connections from the
Internet. An active client is the one that has a public IP address
and is connected directly to the Internet. It can receive direct
connections from other clients.
An active client can download files from any other client of any
type but a passive client can download files only from active
clients. Two passive clients cannot download files from each
other using DC++ protocol unless they are on the same LAN.

There are millions of DC++ hubs in the Internet and each of
them can have thousands of clients, depending on its resources.

2.2 DC++ usage in DDoS attacks

At the beginning of year 2007 there were many reports of
DDoS attacks against web servers, generated by DC++ clients.

This kind of attack can have a very large scale, respectively
several thousand computers that send traffic to a victim server
resulting in about 25.000 connections/second for a moderately
big attack. While a typical server can handle a few hundred
connections/sec before its performance begins to degrade, most
web servers “die” almost instantly when they have to face six
or seven hundred connections/sec. So, in case of a DDoS attack
implemented with DC++ clients, most of the web servers can be
completely disabled.

The classical defense mechanisms are not effective against them
and the really effective ones are very expensive.

3. ATTACK DESCRIPTION

3.1 Direct Connect

In order to fully understand this kind of attack, the Direct
Connect protocol must be understood first.
Direct Connect protocol has no standard version and it was
initially documented by reverse engineering the first Direct
Connect client application – NeoModus. Nowadays it is being
maintained and developed by various groups from the Internet.

Direct Connect (DC) is an application level protocol that uses
TCP for transport. It is a clear text protocol, unencrypted, that
uses commands of the following form: $<command>|, where
‘|’ is the command delimiter.
In DC protocol there are four communication types (usage
scenarios):

1. Hub �� Client
2. Client ��Client
3. Hub �� Hub (in development)
4. Hub �� Hublist server

For the purpose of this article we will explain the second
scenario, the Client �� Client communication, which is
exploited to generate DDoS attacks.

DC++ clients communicate directly with each other when they
want to download files. The communication between two
clients is initiated through the hub to which are both connected,
because this is their only common point. As we mentioned
before, if the Downloader client and the Uploader client are
both passive, the file transfer between them is not possible
using Direct Connect protocol. If the Downloader is active and
the Uploader is passive, then the Downloader cannot initiate a
connection to the Uploader in order to transfer files. So, in order
to do the file transfer, it will give the Uploader a command
(through the hub) to initiate back a connection to the active
Downloader and this way the file transfer can begin.
 These are the steps of a file download in DC protocol:
 D = downloader

 U = uploader

 H = hub

1. D>H: $ConnectToMe <U's username>
<D's IP and port>|

2. H>U: $ConnectToMe <U's username>
<D's IP and port>|

3. U>D: TCP Connection to D’s IP and port
4. U>D: $MyNick <U's nick>|$Lock <new

lock with pk>|
5. D>U: $MyNick <D's nick>|$Lock <new

lock with pk>|$Direction Upload
<anumber>|$Key <key for U's lock>|

6. U>D: . $Direction Download <a number>|
$Key <key for D's lock>|

7. D>U: $Get <filepath + filename>$<start
at byte (1=beginning of file)>|

8. U>D: $FileLength <length of the
requested file>|

9. D>U: $Send|
10. U>D: Data, in many chunks.
11. D>U: $Send| (when 40906 bytes

are sent, ask for more)

We will explain the first four steps, because they are relevant to
the DDoS attack. Steps 5-11 are also protocol specific and they
deal with the transfer of the file bytes, after the direct
connection between the two clients has been established. A full
Direct Connect command reference can be found in [6].

We can see in the first step that the Downloader sends the
command $ConnectToMe to the hub. The command parameters
are the Uploader’s nickname and the Downloader’s IP address
and port. The hub must send this command unaltered to the
Uploader (identified by its nick name) – step 2. When a client
(Uploader) receives a $ConnectToMe command, it must initiate
a TCP connection to the client that sent this command

(identified by its IP address and port) – step 3. As we already
said, this behavior is necessary when direct connection between
two clients is not possible because of the network topology (one
of the clients is behind of a NAT device or firewall and the
other has public IP address).

After the TCP connection has been established, the Uploader
sends to the Downloader the command $MyNick which is used
to identify itself. The rest of the commands (steps 5-11) are
used to effectively do the data transfer, between the two clients
directly.

3.2 The Attack

The attack uses a vulnerability in the DC++ hubs (Verlihub-
0.9.8c, Verlihub-0.9.8d-rc1, Ynhub < 1.0306, Ptokax < 0.3.5.2),
respectively in the Client-to-Client communication described
above.

The vulnerability is in step 2, when the hub forwards the
$ConnectToMe request to the Uploader client without verifying
it. So the Downloader can put any IP address and port it wants
in the $ConnectToMe request and the receiving client
(Uploader) will connect to that address, trying to continue the
file download protocol.

It is very easy to make a tool that generates a DDoS attack
using this vulnerability. All the tool needs to do is to connect to
several DC++ hubs (which are vulnerable) and repeatedly send
forged $ConnectToMe requests to each of the hub’s clients. The
forged requests must have the Downloader’s IP address and port
set to victim server’s IP address and port. That way all the hub
clients that receive this message will initiate connections to the
victim and try to continue the file download (steps 3 and 4)

 D = downloader (attacker)

 U = uploader (DC++ client)

 H = hub

 V = victim

1. D>H: $ConnectToMe<U’s username, Victim’s IP

and port>
2. H>U: $$ConnectToMe<U’s username, Victim’s

IP and port>
3. U>V: TCP Connection
4. U>V: $MyNick <U’s nick>|$Lock <new lock

with pk>|

This behavior is presented in Figure 2.

Figure 2: A DC++ DDoS attack in action

 So, from the attacker’s point of view it is a low bandwidth
attack but the effects on the victim side are maxim.

This kind of attacks is usually done against web servers. During
the attack, the web server first does legitimate TCP handshakes
with the DC++ clients and then receives non-HTTP packets
containing Direct Connect commands like: $MyNick
clientxxx|$Lock EXTENDEDPROTOCOL
Pk=DCPLUSPLUS0.674 (step 4).

The HTTP protocol makes the server wait for a configured
period of time until it receives a valid HTTP request. So its
resources for that connection will be unavailable until the
timeout expires. The very big number of connections
simultaneously established with the web server finishes its
resources and makes it unavailable for any legitimate requests.

The number of connections/sec generated during an attack can
be calculated after the following formula:

 connections/sec = hub_no * hub_clients * $CTMs/sec
where:
 hub_no = number of hubs participating in
 the attack
 hub_clients = average number of clients
 on each hub
 $CTMs/sec = number of $ConnectToMe
 commands received by
 each client per second

For a moderately big attack, the variables could be:
 hub_no ~= 5
 hub_clients ~= 5000
 $CTMs/sec ~= 1
 => 25.000 connections/sec

 Because of the big number of requests, the attack could easily
be confounded with a SYN flood attack.

4. ATTACK MITIGATION

In this section we will present a number of methods that can be
used on the victim side to mitigate the attack. Such an attack
can last days or weeks and the administrator of the victim server
has time to try different mitigation methods and to find the
culprit. The ideas presented below come from practical
experience during such an attack.

The first thing that comes in mind when dealing with a DC++
based DDoS attack is to block the IP addresses of the DC++
clients at network level using a firewall. But this method
usually doesn’t have any positive effect because the clients of a
DC++ hub are very dynamic and the IP addresses change in
matter of seconds or minutes. New clients from different IP
blocks join the attacker hubs and the blacklisting method is not
efficient. A big number of firewall rules would considerably
slow down the firewall device resulting also in service
unavailability.

After a little bit of thinking, another possible solution comes in
mind. We can see that this is an IP based attack. So, in case of a
web server, we could change periodically the IP address of the
web server and modify the DNS resolution accordingly. Some
attack tools are smarter but others are just for script kiddies.
This solution could slow down a script kiddy that doesn’t know
how to modify the tool in order to target the current IP address
of the victim.

In case of a web server being attacked, we can see that when it
receives a non-HTTP packet, it waits for a timeout to expire
before resetting the TCP connection. This timeout is specified in
the configuration file of the web server. In case of Apache, this
parameter can be found in httpd.conf file and is called Timeout.
Its default value is 300 seconds (5 minutes!) and it should be
lowered to 30 seconds. This way, the server will not keep its
resources busy for that long time.

This kind of DC++ based DDoS attack is an application level
attack. Older DDoS attacks were at network or transport level
and they were easier to mitigate by using firewalls or other IP
filtering mechanisms. But application level attacks are
legitimate from the network or transport’s layer point of view.
So the only way to effectively mitigate this kind of attacks is by
using an application level firewall that has deep packet
inspection capabilities.

The easier and cheapest solution, considering a Linux/Unix
machine, is to use the string module of iptables. This module
searches the packet for a given string and can reset the
connection if the string is found. The command is like:

IPTABLES -A INPUT -d $TARGET_IP -p tcp --dport

$TARGET_PORT --tcp-flags ALL PSH,ACK -m string --algo bm

--string MyNick --to 100 -j REJECT --reject-with tcp-reset

This method is effective for small scale DDoS attacks. But
when the attack is bigger, the performance of the server lowers
because it still has to make full TCP handshakes with the DC++
clients and reset the connections only when the first data

packets come.

The most effective way to mitigate a DC++ based DDoS attack
is to use an application level gateway, or proxy server, or a
firewall that can do deep packet inspection. This kind of device
knows how to interpret application level data (layer 7 protocols)
and can reject malformed HTTP requests. But the disadvantage
of this solution is that is very expensive.

Another (expensive) solution to this problem is to redirect the
traffic of the attacked server to a Clean Pipe service provider.
This type of service filtrates the malicious packets and allows
only the legitimate ones to reach the customer.

5. FINDING THE ATTACKER

5.1 Method details - HubMonitor

In this type of attack is very difficult to detect the real attacker
(the one running the attack tool) because the victim doesn’t
have any information about him. The packets that reach the
victim are generated by the DC++ clients and contain no
information about the real attacker.

But there is a nondeterministic method that a victim can use in
order to gather evidence about the attacker during the attack
and/or to stop the attack from its root point. By using this
method, the victim could find the attacker hubs. When one of
these hubs is found, the legal way to shut it down is to contact
its service provider and give it the evidence of the attack and to
contact hublist server owners to erase the hub from its list
because of DDoS. Considering that the number of hubs
participating in an attack is very small (comparing to the
number of DC++ participating clients), shutting down one or
two of them can significantly reduce the amount of attack
traffic.

 As we have seen until now, the real attacker is a modified
DC++ client that sends $ConnectToMe requests to all of the
other clients of the hubs to which it is connected. So all of the
clients of the attacker hubs receive the $ConnectToMe
messages that contain the victim’s IP address and port. The
method of detecting these attacker hubs uses also a modified
DC++ client that connects simultaneously to multiple DC++
hubs and listens for $ConnectToMe ($CTM) messages that are
targeted to the victim. In Figure 3 there is a visual description of
this behavior.

We have implemented this method into a freeware tool called
HubMonitor that can be found at [7].
HubMonitor is a command line tool that allows its operator to
inspect automatically or manually the traffic of multiple hubs
and to detect the attacker ones. The algorithm used by
HubMonitor is a parallelized version of this one (pseudo-code):

1. Read the list of hubs to connect to
2. For each hub H

a. Connect to H
b. Wait few minutes for $CTM packets
c. IF receive $CTM and (IP == victim IP) AND (port ==

victim port) then
i. H is an attacker hub

 ELSE
ii. H is not an attacker hub

d. Disconnect from H

3. Exit

Figure 3: Detecting the attacker hubs

This very simplistic algorithm has one unknown element. This
is the hub list to connect to. To get the hub list, the operator has
at least two methods:

- get the hub list from a Hublist server
- compose manually the hub list based
 on observations

For the moment, HubMonitor only accepts a list of hubs given
as an input file.

But getting the hub list from a hublist server can be done
automatically too. Hub lists can be found on XML format or on
a special hublist.config format. The advantage is that the tool
will crawl through a very big number of hubs and the chances
of finding the attacker hubs are greater. But the method is slow
because connecting to each hub is time consuming. Hublist
servers can be easily found with a simple web search. Example:
dchublist.com, adchublist.com, dchublist.ro, dchubs.ro,
hublist.top25.ro. For better results, the hublist servers from the
country where the victim resides should be searched first.
The algorithm below is an improved version of the one
HubMonitor currently uses:

1. Read the list of Hublist servers
2. For each Hublist server HB

a. Connect to HB
b. Download hub_list
c. Parse hub_list and extract INFO:
 hub name, port, minimum share
 size
d. Add INFO to hub_info_list

3. For each hub H in hub_info_list
a. Connect to H
b. Wait few minutes for $CTM packets
c. IF receive $CTM and (IP ==
 victim IP) AND (port == victim
 port)

i. H is an attacker hub
 ELSE

ii. H is not an attacker hub
d. Disconnect from H

4. Exit

When you want to compose a list of hubs to verify (with
HubMonitor), there are some observations that can be useful:

• Look at the nicknames from the $ConnectToMe packet.
Many nicknames contain additional information such as
country, town, ISP (ex. [RO][B][RDS] xxx, [IT]kkk,
[FI] ppp, etc). Based on the predominant country you
can focus on hublist servers from that country. The
country can also be obtained from the IP address.

• If you are an ISP and your server is attacked, there is a
big probability that some of the attacking DC++ clients
to be in your network (verify by source IP address).
Then you can call on the phone the person who has that
IP address and ask him to tell you all the hub names to
which he is connected in that moment. Those suspect
hubs can be used as input to the tool described above
and the chances to find the attacker hubs are greatly
improved.

• Think about your enemies and analyze any messages
received during the attack that can point to the hackers
performing it. There are specialized hacker groups in the
Internet that own DC++ hubs and can generate such an
attack against your server. You can find their hubs and
try the tool on them. More about this subject on the next
paragraph.

5.2 DC++ teams

When this attack was often used by various malicious people
from the Internet, there were a lot of vulnerable hubs out there.
Now their number is considerably lower because the
administrators have upgraded the hub software and they cannot
be used in the attack anymore. Furthermore, the vulnerable hubs
have been blacklisted on some hublist servers.

 But many of the hubs from the Internet are owned by

individuals who are part of various hacker teams. So they can
downgrade anytime their hub software to a vulnerable version
or use a custom made hub software in order to use them in
DDoS attacks.

 One of these teams is called TeamElite (‘][’€AM € LiT €) and

is composed of various young persons around the world. The
most skilled of them are good programmers, capable of building
their own hacking tools (including viruses, worms, etc) and
have deep knowledge of computer systems. TeamElite has often
been involved in many illegal activities, including web site
defacements and DDoS attacks [8]. They are the owners of a
couple of DC++ hubs and they also work on Direct Connect
protocol development [9][10].

 In case of an attack, system administrators should consider

checking the hubs of the known hacker teams – using the
method presented in 5.1 - who might use them in the attack.

6. CONCLUSIONS

Peer-to-peer networks have a big attack potential from the
malicious people’s point of view. When hackers find flaws in
these networks, the generated attacks can be very powerful
because of the big number of clients participating at them.

The DDoS attack described in this article is very dangerous
because it is easy to implement by the hackers and is very
difficult to defend against it on the victim side. Above that, the
victim has no way of knowing directly who the attacker is
because it has no evidence in the received packets.

Regarding defense methods, the more efficient they are, the
more expensive they are.

 This article provided an in depth description of the DC++ based
DDoS attack, including measures to defend against it and a
method to find the attackers behind the attack.

REFERENCES

[1] Jose Nazario, “Estonian DDoS Attacks - A summary to
date”,http://asert.arbornetworks.com/2007/05/estonian-ddos-
attacks-a-summary-to-date
[2] Gregg Keizer, “RSA - Top botnets control 1M hijacked
computers”,http://www.computerworld.com.au/index.php/id;11
83357273
[3] Jeremiah Grossman , “CSRF DDoS, skeleton in the
closet”,http://jeremiahgrossman.blogspot.com/2008/04/csrf-
ddos-skeleton-in-closet.html
[4] Prolexic - “P2P DDoS Attacks”,http://www.prolexic.com/
content/moduleId/tPjJLKRF/article/aRQNVcBH.html
[5] Robert Lemos, “Peer-to-peer networks co-opted for DOS
attacks”, http://www.securityfocus.com/news/11466
[6] “Direct Connect Protocol Documentation”,
http://www.teamfair.info/DC-Protocol.htm
[7] http://stormsecurity.wordpress.com/2008/08/11/dc-and-
ddos-attacks/
[8] Ari Husa, “CERT-FI Team Update”, “www.cert.org/
archive/pdf/CERT-FIactivities_CERT-FI-Pub.pdf
[9] http://nemesis.te-home.net
[10] http://portal.te-home.net

